Answer:
0.185M sulfuric acid
Explanation:
Based on the reaction:
H₂SO₄ + 2KOH → K₂SO₄ + 2H₂O
<em>1 mole of sulfuric acid reacts with 2 moles of KOH</em>
Initial moles of H₂SO₄ and KOH are:
H₂SO₄: 0.750L ₓ (0.470mol / L) = <em>0.3525 moles of H₂SO₄</em>
KOH: 0.700L ₓ (0.240mol / L) = <em>0.168 moles of KOH</em>
The moles of sulfuric acis that react with KOH are:
0.168mol KOH ₓ (1 mole H₂SO₄ / 2 moles KOH) = 0.0840 moles of sulfuric acid.
Thus, moles that remain are:
0.3525moles - 0.0840 moles = <em>0.2685 moles of sulfuric acid remains</em>
As total volume is 0.700L + 0.750L = 1.450L, concentration is:
0.2685mol / 1.450L = <em>0.185M sulfuric acid</em>
Answer:
Radium
Explanation:
It has the highest atomic number so it would have more shells, making it larger than the others.
Answer:
To prepare 1.00 L of 2.0 M urea solution, we need to dissolve 120 g of urea in enough water to produce a total of 1.00 L solution
Explanation:
Molarity of a solute in a solution denotes number of moles of solute dissolved in 1 L of solution.
So, moles of urea in 1.00 L of a 2.0 M urea solution = 2 moles
We know, number of moles of a compound is the ratio of mass to molar mass of that compound.
So, mass of 2 moles of urea = 
Therefore to prepare 1.00 L of 2.0 M urea solution, we need to dissolve 120 g of urea in enough water to produce a total of 1.00 L solution
So, option (C) is correct.
Answer:
the oxidation number of those elements is 2 because some of them are molecules
Answer:1. the junk sculpture rules say the forms have to change every two weeks or be taken clear down. 2. the weather and other people change the forms after they are built
Explanation: