Answer:
The oxidation number of the metal decreases
2 Al + Fe₂O₃ → Al₂O₃ + 2 FeO
The metal element iron, is reduced from Fe⁺³ in Fe₂O₃ to Fe⁺² in FeO
Explanation:
When an element gains electron, the element becomes reduced, hence when a metal is reduced, the metal gains electrons, which reduces the oxidation number of the metal
An example of a metal being reduced is;
2 Al + Fe₂O₃ → Al₂O₃ + 2 FeO
In the above reaction, the iron (III) oxide is reduced to iron (II) oxide by aluminium metal.
Answer:
At STP, 760mmHg or 1 atm and OK or 273 degrees celcius
Explanation:
The standard temperature and pressure is the temperature and pressure at which we have the molecules of a gas behaving as an ideal gas. At this temperature and pressure, it is expected that the gas exhibits some properties that make it behave like an ideal gas.
This temperature and pressure conform some certain properties on a gas molecule which make us say it is behaving like an ideal gas. Ordinarily at other temperatures and pressures, these properties are not obtainable
Take for instance, one mole of a gas at stp occupies a volume of 22.4L. This particular volume is not obtainable at other temperatures and pressures but at this particular temperature and pressure. One mole of a gas will occupy this said volume no matter its molar mass and constituent elements. This is because at this temperature and pressure, the gas is expected to behave like an ideal gas and thus exhibit the characteristics which are expected of an ideal gas
I believe the answer is The Dolphins.
In their Cooperative hunting, The dolphins requires five of its members to form of barrier while one or two of them are herding (Driving) their preys toward the barriers. And each dolphins will always play the same role in their group just like what we see in a football team.
Answer:
19.07 g mol^-1
Explanation:
The computation of the molecular mass of the unknown gas is shown below:
As we know that

where,
Diffusion rate of unknown gas = 155 mL/s
CO_2 diffusion rate = 102 mL/s
CO_2 molar mass = 44 g mol^-1
Unknown gas molercualr mass = M_unknown
Now placing these values to the above formula

After solving this, the molecular mass of the unknown gas is
= 19.07 g mol^-1