Answer:
Part A:
to two significant figures
Part B:
to two significant figures
Part C:
to two significant figures
Explanation:
Given that :
mass of the hydrogen = 0.30 g
the molar mass of hydrogen gas molecule = 2 g/mol
we all know that:
number of moles = mass/molar mass
number of moles = 0.30 g /2 g/mol
number of moles = 0.15 mol
For low temperature between the range of 50 K to 100 K, the specific heat at constant volume for a diatomic gas molecule = 
For Part A:




to two significant figures
Part B. For hot temperature, 




to two significant figures
Part C. For an extremely hot temperature, 




to two significant figures
Answer: K =24 psi
Explanation:
Given: Standard deviation =3psi
Internal pressure strength =157psi
Number of random bottle =n=64
K= 3 × square root of 64
K= 3×8=24 psi
If mean internal pressure K fall below K,
157-1.3=155.7psi
At 2%:
0.16×64 = 10.24
Answer: vf= 51 m/s and d= 112 m
Explanation: solution attached
Answer:
<em>In physics, energy is the quantitative property that must be transferred to an object in order to perform work on, or to heat, the object. Energy is a conserved quantity; the law of conservation of energy states that energy can be converted in form, but not created or destroyed.</em>
<em />
<em>In physics, energy is the quantitative property that must be transferred to an object in order to perform work on, or to heat, the object. Energy is a conserved quantity; the law of conservation of energy states that energy can be converted in form, but not created or destroyed.</em>
Explanation:
<h2>
<u><em>HOPE THIS HELPS</em></u></h2>
Answer: Option D: 5.5×10²Joules
Explanation:
Work done is the product of applied force and displacement of the object in the direction of force.
W = F.s = F s cosθ
It is given that the force applied is, F = 55 N
The displacement in the direction of force, s = 10 m
The angle between force and displacement, θ = 0°
Thus, work done on the object:
W = 55 N × 10 m × cos 0° = 550 J = 5.5 × 10² J
Hence, the correct option is D.