Answer:
The answer to your question is: F = 0.4375 N. The force will be 16 times lower than with the first conditions.
Explanation:
Data
F = 7 N
F = ? if the masses is quartered
Formula

Process
Normal conditions F = Km₁m₂/r² = 7
When masses quartered F = K(m₁/4)(m₂/4)/r² = ?
F = K(m₁m₂/16)/r²
F = K(m₁m₂/16r² = 7/16 = 0.4375 N
Answer:
<u><em>The truck was moving 16.5 m/s during the time it took to stop, which was 3 seconds. </em></u>
- <u><em>Initial velocity = 33 m/s</em></u>
- <u><em>Final velocity = 0 m/s</em></u>
- <u><em>Average velocity = (33 + 0) / 2 m/s = 16.5 m/s</em></u>
Explanation:
- <u><em>First, how long does it take the truck to come to a complete stop?</em></u>
- <u><em>( 33 m/s ) / ( 11 m / s^2 ) = 3 seconds</em></u>
- <u><em>Then we can look at the average velocity between when the truck started decelerating and when it came to a complete stop. Because the deceleration is constant (always 11m/s^2) we can use this trick.</em></u>
There are two conditions necessary for total internal reflection, which is when light hits the boundary between two mediums and reflects back into its original medium:
Light is about to pass from a more optically dense medium (slower) to a less optically dense medium (faster).
The angle of incidence is greater than the defined critical angle for the two mediums, which is given by:
θ = sin⁻¹(
/
)
Where θ = critical angle,
= refractive index of faster medium,
= refractive index of slower medium.
Choice C gives one of the above necessary conditions.
use the formula
v= u+ at
v is final velocity , u is initial velocity , a is acceleration and t is time
put the values
20 = 0+ a×5
a = 4 m/s²
<h2>
Option A is the correct answer.</h2>
Explanation:
When an elevator moves upward with consonant acceleration a, the overall acceleration on the body is given by
a' = a + g
So acceleration of pendulum is a + g.
We have equation for period of simple pendulum

In normal case a' = g here a' is more.
From the equation we can see that period of simple pendulum is inversely proportional to square root of acceleration.
Since acceleration increases period decreases.
Option A is the correct answer.