<span>A particular frost-free refrigerator uses about 710kWh of electrical energy per year. You are to express this amount of energy in J, kJ, & Calories.
1 year (365 days / 1 year)(24 hours / 1 day)(3600s / 1h) = 31,536,000s
710 kWh/yr (1 yr) = 710 kWh
710 x 10^3 Wh = </span>710 x 10^3(J/s)(31,536,000s)<span> = 2.24 x 10^13 J
</span>2.24 x 10^13 J = 2.24 x 10^10 kJ = 5.35 x 10^12 cal
Answer:
20 [N], in the opposite direction of the first force.
Explanation:
We know that newton's second law stipulates that the sum of forces on a body must be equal to the product of mass by acceleration.
![SumF = m*a\\30 + F = 2*5\\F = 30 - (2*5)\\F = - 20 [N]](https://tex.z-dn.net/?f=SumF%20%3D%20m%2Aa%5C%5C30%20%2B%20F%20%3D%202%2A5%5C%5CF%20%3D%2030%20-%20%282%2A5%29%5C%5CF%20%3D%20-%2020%20%5BN%5D)
The negative sign means that the other force acting on the body must be in the opposite direction to the force of 30 [N]
Answer:

Explanation:
Generally the workdone in moving the proton is mathematically represented as

Where 
So

Here
is the velocity at A with value 50 m/s
So


Also

Here
is the velocity at A with value 
=> 
=>
So


Now this workdone is also mathematically represented as

So

Here 
So


Generally proton movement is in the direction of the electric field it means that 
So

Explanation:
both are areas of land that drain to particular water bodies such as lakes
PV=nRT
(P)(86.5)=(41.5)(.08206)(300.15)
(P)(86.5)=(1022.157824)
P=11.81685345 atm