Answer:
The near point of an eye with power of +2 dopters, u' = - 50 cm
Given:
Power of a contact lens, P = +2.0 diopters
Solution:
To calculate the near point, we need to find the focal length of the lens which is given by:
Power, P = 
where
f = focal length
Thus
f = 
f =
= + 0.5 m
The near point of the eye is the point distant such that the image formed at this point can be seen clearly by the eye.
Now, by using lens maker formula:

where
u = object distance = 25 cm = 0.25 m = near point of a normal eye
u' = image distance
Now,



Solving the above eqn, we get:
u' = - 0.5 m = - 50 cm
Explanation:
Use the height of the cliff to determine how long it took the car to land.
Take down to be positive. Given:
Δy = 7.93 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
7.93 m = (0 m/s) t + ½ (9.8 m/s²) t²
t = 1.27 s
Use the time to calculate the horizontal velocity.
Given:
Δx = 26.7 m
a = 0 m/s²
Find: v₀
Δx = v₀ t + ½ at²
26.7 m = v₀ (1.27 s) + ½ (0 m/s²) (1.27 s)²
v₀ = 21.0 m/s
The driver was going 21.0 m/s, faster than the speed limit of 9.72 m/s.
Respuesta:
7,6 Ω
Explicación:
Paso 1: Información dada
- Resistencia a 30 °C (R₀): 6 Ω
- Coeficiente de temperatura (α): 0,00392 °C⁻¹
Paso 2: Hallar la resistencia (R) a 100 °C
Podemos ver la relación entre la resistencia de un material y la temperatura usando la siguiente ecuación.
R = R₀ (1 + α × ΔT)
R = 6 Ω (1 + 0,00392 °C⁻¹ × (100 °C - 30 °C)) = 7,6 Ω
Answer:
Photosynthesis is a process by which phototrophs convert light energy into chemical energy, which is later used to fuel cellular activities. The chemical energy is stored in the form of sugars, which are created from water and carbon dioxide.
Density equals mass divided by volume so the ball the higher amount of mass has more density than the ball with less mass has less density. (The golf ball has more density than the ping pong ball)