Answer:
A. Current power may decrease the fish population.
Explanation:
The statement that best describes the impact of ocean thermal power and current power on the environment is that current power may decrease the fish population.
The environment is made up of living and non-living components that co-exist and interact with one another.
- Harnessing current power from ocean movement will seriously affect the fish population.
- Most fishes are not sedentary. They move and glide through the water.
- When current power causes a change in the environment of the fish.
- This will definitely affect the normal condition prevalent in the body of water.
When the projectile is at its maximum height above ground, it's at the point
of changing from rising to falling. At that exact point, its vertical speed is zero,
so the 14 m/s must be all horizontal velocity. That's not going to change.
Since we need to consider changes in vertical speed now, we need to make
some assumption about where this is all happening, so that we know the
acceleration of gravity. I'll assume that it's all happening on or near the Earth,
and the acceleration of gravity is 9.8 m/s².
I'm also going to neglect air resistance.
a). 1.2 sec before it reaches its maximum height, the projectile is rising
at a vertical speed of (1.2 x 9.8) = 11.76 m/s.
The magnitude of its velocity is
the square root of (14² + 11.76²) = 18.28 m/s, directed about 40° above horizontal.
b). 1.2 sec after it reaches its maximum height, the projectile is falling
at a vertical speed of (1.2 x 9.8) = 11.76 m/s.
The magnitude of its velocity is
the square root of (14² + 11.76²) = 18.28 m/s, directed about 40° below horizontal.
===========================
In 1.2 second before or after zero vertical speed, an object in free fall moves
(1/2) (g) (t²) = (4.9) (1.2²) = 7.06 meters .
c). & d).
1.2 seconds before it reaches maximum height, the projectile is located at
x = -14 m
y = -7.06 m
e). & f).
1.2 seconds after it reaches maximum height, the projectile is located at
x = +14 m
y = -7.06 m .
I hope you recognize that 6 answers, plus a little bit of explanation,
all for 5 points, ain't too shabby. You made out well.
Answer:
Firstly, we can state that the net force is the sum of all forces acting upon the object. Since the object is stationary, by Newton's First Law we can conclude that the sum of all forces acting upon a stationary object is 0 because there are no forces acting upon the object.
Explanation:
Please support my answer.
(C). Remember gravity provides an acceleration of 9.81m/s^2, so the y component of velocity initial is zero because it isn’t already falling, and we have the height, so basically we use the kinematic equation vf^2=vi^2+2ad, substitute given values and you get vf^2=2(9.81)(65) which is 1275, when you take the square root you get 35.7m/s for final velocity
(B). Then you use vf=vi+at to get the equation 35.7=(9.81)t, when you divide out you get 3.64s for time t
(A). Finally, since we assume that there is no acceleration or deceleration horizonatally, we just multiply the time taken for it to hit the ground and the initial speed ((3.64)(35.7)) to get 129.96, with significant figures I would round that to 130 metres.
**this is in the order that I felt was easiest to answer**
Answer:
C
Explanation:
The law of conservation of energy determines that energy cannot be created or destroyed.