Ceramic is the most brittle of the materials you have specified.
Answer:
D. Electricity will flow if the electrons are bound loosely to their atoms in the material.
Explanation:
The continuous flow of charges is known as electricity (current). The flow of these charges are due to free or mobile electron within the atoms of the conductors. The materials which will allow current to pass through them, must have free or mobile electrons which are loosely bound to their atoms.
Thus, the correction for this question is "D"
D. Electricity will flow if the electrons are bound loosely to their atoms in the material.
Answer:
<h2>
15m/s</h2>
Explanation:
The equation for a traveling wave as expressed as y(x, t) = A cos(kx −
t) where An is the amplitude f oscillation,
is the angular velocity and x is the horizontal displacement and y is the vertical displacement.
From the formula;
where;

Before we can get the transverse speed, we need to get the frequency and the wavelength.
frequency = 1/period
Given period = 2/15 s
Frequency = 
frequency = 1 * 15/2
frequency f = 15/2 Hertz
Given wavelength
= 2m
Transverse speed 

Hence, the transverse speed at that point is 15m/s
Answer:
The force exerted by the ball on the bat has a magnitude of 100 N and its direction is exactly opposite to that of the force exerted by the bat on the ball.
Explanation:
Recall that Newton's third law tells us that : "For every action, there is an equal and opposite reaction."
Therefore if the bat acts on the ball with a force of 100 N, the ball acts on the bat with a similar magnitude of force (100 N) but direction opposite to the original force.

These are the Kepler's laws of planetary motion.
This law relates a planet's orbital period and its average distance to the Sun. - Third law of Kepler.
The orbits of planets are ellipses with the Sun at one focus. - First law of Kepler.
The speed of a planet varies, such that a planet sweeps out an equal area in equal time frames. - Second law of Kepler.