1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
netineya [11]
1 year ago
5

6) Find the speed a spherical raindrop would attain by falling from 4.00 km. Do this:a) In the absence of air dragb) In the pres

ence of air dragc) Assume that the diameter of the drop is 3 mm and the density of the water is 0.98x10^3 kg/m^3
Physics
1 answer:
sleet_krkn [62]1 year ago
7 0

We are asked to determine the velocity of a rain drop if it falls from 4 km.

To do that we will use the following formula:

2ah=v_f^2-v_0^2

Where:

\begin{gathered} a=\text{ acceleration} \\ h=\text{ height} \\ v_f,v_0=\text{ final and initial velocity} \end{gathered}

If we assume the initial velocity to be 0 we get:

2ah=v_f^2

The acceleration is the acceleration due to gravity:

2gh=v_f^2

Now, we take the square root to both sides:

\sqrt{2gh}=v_f

Now, we substitute the values:

\sqrt{2(9.8\frac{m}{s^2})(4000m)}=v_f

solving the operations:

280\frac{m}{s}=v

Therefore, the velocity without air drag is 280 m/s.

Part B. we are asked to determine the velocity if there is air drag. To do that we will use the following formula:

F_d=\frac{1}{2}C\rho_{air}Av^2

Where:

\begin{gathered} F_d=drag\text{ force} \\ C=\text{ constant} \\ \rho_{air}=\text{ density of air} \\ A=\text{ area} \\ v=\text{ velocity} \end{gathered}

We need to determine the drag force. To do that we will use the following free-body diagram:

Since the velocity that the raindrop reaches is the terminal velocity and its a constant velocity this means that the acceleration is zero and therefore the forces are balanced:

F_d=mg

Now, we determine the mass of the raindrop using the following formula:

m=\rho_{water}V

Where:

\begin{gathered} \rho_{water}=\text{ density of water} \\ V=\text{ volume} \end{gathered}

The volume is the volume of a sphere, therefore:

m=\rho_{water}(\frac{4}{3}\pi r^3)

Since the diameter of the raindrop is 3 millimeters, the radius is 1.5 mm or 0.0015 meters. Substituting we get:

m=(0.98\times10^3\frac{kg}{m^3})(\frac{4}{3}\pi(0.0015m)^3)

Solving the operations:

m=1.39\times10^{-5}kg

Now, we substitute the values in the formula for the drag force:

F_d=(1.39\times10^{-5}kg)(9.8\frac{m}{s^2})

Solving the operations:

F_d=1.36\times10^{-4}N

Now, we substitute in the formula:

1.36\times10^{-4}N=\frac{1}{2}C\rho_{air}Av^2

Now, we solve for the velocity:

\frac{1.36\times10^{-4}N}{\frac{1}{2}C\rho_{air}A}=v^2

Now, we substitute the values. We will use the area of a circle:

\frac{1.36\times10^{-4}N}{\frac{1}{2}(0.45)(1.21\frac{kg}{m^3})(\pi r^2)}=v^2

Substituting the radius:

\frac{1.36\cdot10^{-4}N}{\frac{1}{2}(0.45)(1.21\frac{kg}{m^{3}})(\pi(0.0015m)^2)}=v^2

Solving the operations:

70.67\frac{m^2}{s^2}=v^2

Now, we take the square root to both sides:

\begin{gathered} \sqrt{70.67\frac{m^2}{s^2}}=v \\  \\ 8.4\frac{m}{s}=v \\  \end{gathered}

Therefore, the velocity is 8.4 m/s

You might be interested in
Assuming that the circuit is in the steady state, what is the total energy stored in the two capacitors? j
Neporo4naja [7]

<span>The total energy stored is the sum of the energy stored in the capacitors. If the capacitors  are series connected capacitors, then the charging current is the same for both capacitors. This means that each capacitor stores the same energy and the stored energy is two times the energy of any of the capacitors.</span>





8 0
3 years ago
During a free fall Swati was accelerating at -9.8m/s2. After 120 seconds how far did she travel? Use the formula =1/2 * t2 to so
Ulleksa [173]

8/9 score.....................

3 0
3 years ago
Read 2 more answers
a ball is projected horizontally with a velocity of 5 m per second from the top of a building 19.6 m high how long will the ball
zepelin [54]

Answer:

1.98s

Explanation:

The time taken to hit the ground is given by

h=ut+ 1/2 at^2

but u =0

so we have

h=1/2at^2

making t the subject

t=√2h/g

√2×19.6/10

1.98s

8 0
3 years ago
The bob of a pendulum swings back and forth with a total mechanical energy of 300 J. What is the kinetic energy of the bob when
zhenek [66]

at the lowest point in the trajector, the kinetic energy of the bob is 300 J.

Explanation:

The total mechanical energy of the bob at any point of its motion is given by

E=KE+PE

Where

KE=\frac{1}{2}mv^2 is the kinetic energy, where

m is the mass of the bob

v is its speed

PE=mgh is the gravitational potential energy, where

g is the acceleration of gravity

h is the height of the bob, measured with respect to the lowest point of the trajector

In absence of friction, the total mechanical energy E remains constant. So we have:

- When the bob swings upward, the PE increases (because h increases) and the KE decreases (so the speed decreases). At the highest point in the trajector, the speed of the bob is zero (v=0), so its KE is also zero and all the mechanical energy is potential energy: U = 300 J

- When the bob swings downward, the PE decreases (because h decreases) and the KE increases (so the speed increases). At the lowest point in the trajectory, the height has become zero (h=0), so the PE is zero and all the mechanical energy is kinetic energy: KE = 300 J

Therefore, at the lowest point in the trajector, the kinetic energy of the bob is 300 J.

Learn more about kinetic energy:

brainly.com/question/6536722

#LearnwithBrainly

4 0
3 years ago
An object floats in a beaker as shown. when it was put into the beaker, it displaced an amount of water into the graduated cylin
Tanzania [10]

Answer:

answer is  C. 10 g

Explanation:

: When an object floats, it displaces an amount of water that has the same mass as itself. Therefore, the mass of the water in the graduated cylinder is equal to the mass of the object. We can see that there are 10 mL of water in the graduated cylinder. We also know that the density of water is 1 g/mL. Since each mL of water has a mass of 1 g, then 10 mL of water has a mass of 10 g. If the mass of the displaced water is 10 g, then the mass of the floating object is also 10 g.

6 0
3 years ago
Other questions:
  • How do carbon-12 and carbon-13 differ?
    13·2 answers
  • A spring with spring constant 13.1 N/m hangs from the ceiling. A ball is suspended from the spring and allowed to come to rest.
    11·1 answer
  • A bullet with a mass m b = 11.5 g is fired into a block of wood at velocity v b = 249 m/s. The block is attached to a spring tha
    10·1 answer
  • PLEASE HURRY WILL MARK BRAINLIEST IF CORRECT
    14·1 answer
  • How to know if a position time graph table is balanced or unbalanced
    14·1 answer
  • Why does the number of dwarf planets recognized by astronomers in the solar system sometimes increase?
    7·1 answer
  • Jupiter's moon Io has active volcanoes (in fact, it is the most volcanically active body in the solar system) that eject materia
    12·1 answer
  • Pls help i dont know this
    13·1 answer
  • What do you mean by work?​
    11·1 answer
  • A wire that is 1.0 m long with a mass of 90 g is under a tension of 710 N. When a transverse wave travels on the wire, its wavel
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!