1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
netineya [11]
1 year ago
5

6) Find the speed a spherical raindrop would attain by falling from 4.00 km. Do this:a) In the absence of air dragb) In the pres

ence of air dragc) Assume that the diameter of the drop is 3 mm and the density of the water is 0.98x10^3 kg/m^3
Physics
1 answer:
sleet_krkn [62]1 year ago
7 0

We are asked to determine the velocity of a rain drop if it falls from 4 km.

To do that we will use the following formula:

2ah=v_f^2-v_0^2

Where:

\begin{gathered} a=\text{ acceleration} \\ h=\text{ height} \\ v_f,v_0=\text{ final and initial velocity} \end{gathered}

If we assume the initial velocity to be 0 we get:

2ah=v_f^2

The acceleration is the acceleration due to gravity:

2gh=v_f^2

Now, we take the square root to both sides:

\sqrt{2gh}=v_f

Now, we substitute the values:

\sqrt{2(9.8\frac{m}{s^2})(4000m)}=v_f

solving the operations:

280\frac{m}{s}=v

Therefore, the velocity without air drag is 280 m/s.

Part B. we are asked to determine the velocity if there is air drag. To do that we will use the following formula:

F_d=\frac{1}{2}C\rho_{air}Av^2

Where:

\begin{gathered} F_d=drag\text{ force} \\ C=\text{ constant} \\ \rho_{air}=\text{ density of air} \\ A=\text{ area} \\ v=\text{ velocity} \end{gathered}

We need to determine the drag force. To do that we will use the following free-body diagram:

Since the velocity that the raindrop reaches is the terminal velocity and its a constant velocity this means that the acceleration is zero and therefore the forces are balanced:

F_d=mg

Now, we determine the mass of the raindrop using the following formula:

m=\rho_{water}V

Where:

\begin{gathered} \rho_{water}=\text{ density of water} \\ V=\text{ volume} \end{gathered}

The volume is the volume of a sphere, therefore:

m=\rho_{water}(\frac{4}{3}\pi r^3)

Since the diameter of the raindrop is 3 millimeters, the radius is 1.5 mm or 0.0015 meters. Substituting we get:

m=(0.98\times10^3\frac{kg}{m^3})(\frac{4}{3}\pi(0.0015m)^3)

Solving the operations:

m=1.39\times10^{-5}kg

Now, we substitute the values in the formula for the drag force:

F_d=(1.39\times10^{-5}kg)(9.8\frac{m}{s^2})

Solving the operations:

F_d=1.36\times10^{-4}N

Now, we substitute in the formula:

1.36\times10^{-4}N=\frac{1}{2}C\rho_{air}Av^2

Now, we solve for the velocity:

\frac{1.36\times10^{-4}N}{\frac{1}{2}C\rho_{air}A}=v^2

Now, we substitute the values. We will use the area of a circle:

\frac{1.36\times10^{-4}N}{\frac{1}{2}(0.45)(1.21\frac{kg}{m^3})(\pi r^2)}=v^2

Substituting the radius:

\frac{1.36\cdot10^{-4}N}{\frac{1}{2}(0.45)(1.21\frac{kg}{m^{3}})(\pi(0.0015m)^2)}=v^2

Solving the operations:

70.67\frac{m^2}{s^2}=v^2

Now, we take the square root to both sides:

\begin{gathered} \sqrt{70.67\frac{m^2}{s^2}}=v \\  \\ 8.4\frac{m}{s}=v \\  \end{gathered}

Therefore, the velocity is 8.4 m/s

You might be interested in
I need help with this
Kamila [148]
A. corn syrup sorry if I replied late
3 0
3 years ago
Read 2 more answers
Describe a device that transforms thermal energy into<br> another useful form.<br> tes that
spin [16.1K]

Answer: heat engine

Explanation:

4 0
3 years ago
What are the horizontal and vertical components of a lizard’s displacement if it has climbed 7m directly up a tree?
madam [21]

Answer:

The horizontal component is zero.

The vertical component is 7\sin\theta

Explanation:

Given that,

The lizard climb 7m directly up on a tree.

We know that,

The horizontal component is

x=\cos\theta

The vertical component is

y=\sin\theta

If the lizard climb 7m directly up on a tree then,

We need to find the components

Using given data

The horizontal component of lizard is

x=0

The vertical component is

y=7\sin\theta

Hence, The horizontal component is zero.

The vertical component is 7\sin\theta

7 0
3 years ago
. An object has a position given by ~r(t) = [3.0 m − (4.00 m/s)t]ˆı + [6.0 m − (8.00 m/s2 )t 2 ]ˆ , where all quantities are in
kupik [55]

Answer:

(c) 16 m/s²

Explanation:

The position is r(t) = [3.0 \text{ m} - (4.00 \text{ m/s})t]\hat{i} + [6.0 \text{m} - (8.00 \text{ m/s}^2 )t^2 ]\hat{j}.

The velocity is the first time-derivative of <em>r(t).</em>

<em />v(t) = \dfrac{d}{dt}r(t) = -4.00\,\hat{i} -16t\,\hat{j}<em />

The acceleration is the first time-derivative of the velocity.

a(t) = \dfrac{d}{dt} v(t) = -16\hat{j}

Since <em>a(t)</em> does not have the variable <em>t</em>, it is constant. Hence, at any time,

a = -16\hat{j}

Its magnitude is 16 m/s².

4 0
3 years ago
Bob runs 1800 seconds at an average speed of 1.5 m/sec. How far did he go? 25 Points!!!!
german

Distance= Time×Speed

= 1800×1.5

= 2700 m

I am not sure it's right. the question itself is confusing.

4 0
3 years ago
Other questions:
  • Greg is in a car at the top of a roller-coaster ride. The distance, d, of the car from the ground as the car descends is determi
    15·1 answer
  • Which force in nature is believed to have formed second?
    10·1 answer
  • why is the meteor crater in arizona still visible when most impact craters created by meteorites hitting earth are not
    8·2 answers
  • A football is kicked into the air verticaly upward. What is its(a)accelaration and(b)velocity at the highest point
    14·1 answer
  • If the pressure acting on a given sample of an ideal gas at constant temperature is tripled, what happens to the volume of the g
    5·1 answer
  • A nucleus in a transition from an excited state emits a gamma-ray photon with an energy of 2.5 MeV. (a)
    10·1 answer
  • A stone is thrown vertically upward with an initial speed of 5 m/s. What is the velocity of the stone 3 seconds later?
    8·2 answers
  • What is the definition of conservation of energy
    5·2 answers
  • What two factors determine the density of water in deep currents?
    9·1 answer
  • 7. Cellular respiration that uses oxygen is called ​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!