Answer:
Oh it is convention
Explanation:
because the heat transfer is through fluids
I can't remember any of the weights of the individual elements but here is how you solve it:
Molecular weight of copper + nitrogen + 3 oxygens = molecular weight of the compound.
M = moles / liter
.350 moles / 1 liter
Do .350 moles / liter x the molecular weight (g / mole) of the compound = the answer in g / L
Answer:

Explanation:
Hello,
In this case, the increase in the temperature involves the addition of heat that is defined in terms of mass, heat capacity and temperature:

In this case, the heat capacity of iron is 0.450 J/(g*K), thus the heat results:

In such a way, since the temperature is increased heat is added, that is why it is positive.
Best regards.
<u>Answer:</u> The true statements are
for an endothermic reaction is positive, a combustion reaction is exothermic and when energy is transferred as heat from the system to the surroundings,
is negative.
<u>Explanation:</u>
There are 2 types of chemical reactions categorized into heat change:
- <u>Endothermic reactions:</u> These reactions are defined as the reactions in which energy is absorbed by the system from the surroundings. The
for these reactions is always positive. For Example: Changing of water into water vapor. - <u>Exothermic reactions:</u> These reactions are defined as the reactions in which energy is released by the system to the surroundings. The
for these reactions is always negative. For Example: Combustion reactions.
Combustion reactions are defined as the reactions in which a hydrocarbon reacts with oxygen gas to produce carbon dioxide and water. Heat is released during these reactions. Thus, it is considered as exothermic reactions.
Hence, the true statements are
for an endothermic reaction is positive, a combustion reaction is exothermic and when energy is transferred as heat from the system to the surroundings,
is negative.