Answer:
The relative mass of electron is 0.0005
Explanation:
Atoms are the fundamental unit of matter. Every thing in the universe that occupy space and have mass is called matter. we can say that every matter is composed of atoms. while the atom is composed of subatomic particles called electron proton and neutron.
Subatomic particles Relative charge Relative mass
Proton +1 1
Neutron 0 1
Electron -1 0.0005
Electron:
The electron is subatomic particle that revolve around outside the nucleus and has negligible mass. It has a negative charge.
Symbol = e⁻
Mass= 9.10938356×10⁻³¹ Kg
electrical charge on electron= -1.6022 × 10⁻¹⁹ C
It was discovered by j. j. Thomson in 1897 during the study of cathode ray properties.
Proton and Neutron:
An atom consist of positively charged central core (nucleus) that is made up of Proton and neutron. Proton has positive charge while neutron is electrically neutral. Proton is discovered by Rutherford while neutron is discovered by James Chadwick in 1932.
Symbol of proton= P⁺
electrical charge on proton= +1.6022 × 10⁻¹⁹ C
Mass of proton=1.672623×10⁻²⁷ Kg
Symbol of neutron= n⁰
Mass of neutron=1.674929×10⁻²⁷ Kg
electrical charge on neutron= 0
1) Calculate the number of moles of O2 (g) in 300 cm^3 of gas at 298 k and 1 atm
Ideal gas equation: pV = nRT => n = pV / RT
R = 0.0821 atm*liter/K*mol
V = 300 cm^3 = 0.300 liter
T = 298 K
p = 1 atm
=> n = 1 atm * 0.300 liter / [ (0.0821 atm*liter /K*mol) * 298K] = 0.01226 mol
2) The reaction of a metal with O2(g) to form an ionic compound (with O2- ions) is of the type
X (+) + O2 (g) ---> X2O or
2 X(2+) + O2(g) ----> X2O2 = 2XO or
4X(3+) + 3O2(g) ---> 2X2O3
In the first case, 1 mol of metal react with 1 mol of O2(g); in the second case, 2 moles of metal react with 1 mol of O2(g); in the third, 4 moles of X react with 3 moles of O2(g)
So, lets probe those 3 cases.
3) Case 1: 1 mol of metal X / 1 mol O2(g) = x moles / 0.01226 mol
=> x = 0.01226 moles of metal X
Now you can calculate the atomic mass of the hypotethical metal:
1.15 grams / 0.01226 mol = 93.8 g / mol
That does not correspond to any of the metal with valence 1+
So, now probe the case 2.
4) Case 2:
2moles X metal / 1 mol O2(g) = x / 0.01226 mol
=> x = 2 * 0.01226 = 0.02452 mol
And the atomic mass of the metal is: 1.15 g / 0.02452 mol = 46.9 g/mol
That is similar to the atomic mass of titanium which is 47.9 g / mol and whose valece is 2+.
4) Case 3
4 mol meta X / 3 mol O2 = x / 0.01226 => x = 0.01226 * 4 / 3 = 0.01635
atomic mass = 1.15 g / 0.01635 mol = 70.33 g/mol
That does not correspond to any metal.
Conclusion: the identity of the metallic element could be titanium.
The chemical formula of aluminium nitrate is - Al(NO₃)₃
cation is Al³⁺
anion is NO₃⁻
One Al atom binds to three nitrate groups
the options given are
2. <span>It has three aluminum (Al) atoms
this is incorrect as there's only one Al atom
3. </span><span>It has one NO3 group.
this is incorrect as there are three nitrate groups
4. </span><span>It has nine nitrogen (N) atoms
there are only 3 N atoms therefore this too is incorrect
</span>therefore the correct answer is -
It has three NO₃<span> groups
</span>
Hey there!:
Molar mass:
CHCl3 = ( 12.01 * 1 )+ (1.008 * 1 ) + ( 35.45 * 3 ) => 119.37 g/mol
C% = ( atomic mass C / molar mass CHCl3 ) * 100
For C :
C % = (12.01 / 119.37 ) * 100
C% = ( 0.1006 * 100 )
C% = 10.06 %
For H :
H% = ( atomic mass H / molar mass CHCl3 ) * 100
H% = ( 1.008 / 119.37 ) * 100
H% = 0.008444 * 100
H% = 0.8444 %
For Cl :
Cl % ( molar mass Cl3 / molar mass CHCl3 ):
Cl% = ( 3 * 35.45 / 119.37 ) * 100
Cl% = ( 106.35 / 119.37 ) * 100
Cl% = 0.8909 * 100
Cl% = 89.9%
Hope that helps!
Answer:
B is the correct option
Explanation:
K= the ratio of product of concentration of products to the product of concentration of reactants raised to power equal to their cofficients.