Answer: It is true that Your friend should release the
first.
Explanation:
The velocity of particles of a gas is inversely proportional to the mass of gas. This means that more is the mass of gas less will be its velocity.
Or, more will be the mass of gas more slowly it will move from one place to another.
The molar mass of chlorine gas is more than the molar mass of hydrogen gas. Therefore, chlorine gas will move slowly.
So, your friend should release the
gas first and then according to the length of room you should release the
gas.
Thus, we can conclude that it is true that Your friend should release the
first.
The answer is C. The answer is C because if u increase the surface area, the more reactants u will get. and if u get more The reactants will move faster. Hoped that Helped!:-)
Infection control is the discipline concerned with preventing nosocomial or healthcare-associated infection, a practical (rather than academic) sub-discipline of epidemiology. It is an essential, though often underrecognized and undersupported, part of the infrastructure of health care. Infection control and hospital epidemiology are akin to public health practice, practiced within the confines of a particular health-care delivery system rather than directed at society as a whole. Anti-infective agents include antibiotics, antibacterials, antifungals, antivirals and antiprotozoals.[1]
Infection control addresses factors related to the spread of infections within the healthcare setting (whether patient-to-patient, from patients to staff and from staff to patients, or among-staff), including prevention (via hand hygiene/hand washing, cleaning/disinfection/sterilization, vaccination, surveillance), monitoring/investigation of demonstrated or suspected spread of infection within a particular health-care setting (surveillance and outbreak investigation), and management (interruption of outbreaks). It is on this basis that the common title being adopted within health care is "infection prevention and control." (got from google
Answer:
3.824 atm
Explanation:
From the ideal gas equation
P = mRT/MW × V
m is mass of testosterone = 12.9 g
R is gas constant = 82.057 cm^3.atm/mol.K
T is temperature of benzene solution = 298 K
MW is molecular weight of testosterone = 288.40 g/mol
V is volume of benzene solution = 286 ml = 286 cm^3
P = 12.9×82.057×298/288.4×286 = 3.824 atm