Do not worry if you don't recognize both parts of the problem at this point. If you recognize the dynamics problem,<span> On the other hand, if you recognize this as a kinematics problem you will quickly see that you need to find angular acceleration before you can begin and so will need to do that pre-step first.</span>

The most effective forces on the object are the backward force of air resistance relatively very small in magnitude, and the force of gravity. Because the spiral path of the satellite is not perpendicular to the gravitational force, one element of the gravitational force pulls forward. at the satellite to do fantastic work & make its speed increase.
<h3>What is called gravitational force?</h3>
Gravity, additionally referred to as gravitation, is a force that exists amongst all material gadgets withinside the universe. For any objects or particles having nonzero mass, the force of gravity tends to draw them in the direction of each other. Gravity operates on objects of all sizes, from subatomic particles to clusters of galaxies.
To learn more about gravitational force, visit;
brainly.com/question/9266911
#SPJ4
Refraction is a phenomenon which results when a ray of light enters from one medium to another medium. When a ray of light enters from denser medium to rarer medium, it bends away from the normal. The laws of refraction are: The incident ray, the refracted ray and the normal all lie in the same plane.
Answer:
350J
Explanation:
Given parameters:
Weight of bag = 20N
Distance moved horizontally = 35m
Force applied = 10N
Unknown:
Work done on the bag = ?
Solution:
Work done is the force applied to move a body through given distance.
Work done = Force applied x distance
So;
Work done = 10 x 35 = 350J
Answer:
.
Explanation:
The average kinetic energy per molecule of a ideal gas is given by:

Now, we know that 
Before the absorption we have:
(1)
After the absorption,
(2)
If we want the ratio of v2/v1, let's divide the equation (2) by the equation (1)




Therefore the ratio will be 
I hope it helps you!