Answer:
ice melting
Explanation:
Because once it melts you can change it back to ice.
Any energy transformation involves the loss of some energy as B. Heat.
Given:
10^10 electrons per second
To justify that coulomb is a very large unit for practical use, we need to convert the quantity of electron given to Coulombs:
From literature,
1 Coulomb is equivalent to 6.242×10^18 electrons<span>.
So,
= 10^10 electrons * (1 coulomb/</span><span>6.242×10^18</span> electrons) / second
<span>= 1.602 x 10^-9 coulumbs
This value is too small to be used in an actual setting.
</span><span>
</span>
At rest, initial speed zero
x=v(initial) t+ 1/2 at^2
-1000m=0(10) + 1/2 a 10^2
-1000m=50a
a = -20 m/s^2
Answer:
the can's kinetic energy is 0.42 J
Explanation:
given information:
Mass, m = 460 g = 0.46 kg
diameter, d = 6 cm, so r = d/2 = 6/2 = 3 cm = 0.03 m
velocity, v = 1.1 m/s
the kinetic energy of the can is the total of kinetic energy of the translation and rotational.
KE =
I ω^2 + 
where
I =
and ω = 
thus,
KE =
(
)^2 + 
=
+ 
=
+ 
= 
=
= 0.42 J