1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kkurt [141]
3 years ago
9

The electrons in the beam of a television tube have a kinetic energy of 2.20 10-15 j. initially, the electrons move horizontally

from west to east. the vertical component of the earth's magnetic field points down, toward the surface of the earth, and has a magnitude of 3.00 10-5 t. (a) in what direction are the electrons deflected by this field component? due north due south due east due west (b) what is the magnitude of the acceleration of an electron in part (a)? m/s2
Physics
1 answer:
dalvyx [7]3 years ago
5 0
(a) The electrons move horizontally from west to east, while the magnetic field is directed downward, toward the surface. We can determine the direction of the force on the electron by using the right-hand rule:
- index finger: velocity --> due east
- middle finger: magnetic field --> downward
- thumb: force --> due north
However, we have to take into account that the electron has negative charge, therefore we have to take the opposite direction: so, the magnetic force is directed southwards, and the electrons are deflected due south.

b) From the kinetic energy of the electrons, we can find their velocity by using
K= \frac{1}{2}mv^2
where K is the kinetic energy, m the electron mass and v their velocity. Re-arranging the formula, we find
v= \sqrt{ \frac{2K}{m} }= \sqrt{ \frac{2 \cdot 2.20 \cdot 10^{-15} J}{9.1 \cdot 10^{-31} kg} }=6.95 \cdot 10^7 m/s

The Lorentz force due to the magnetic field provides the centripetal force that deflects the electrons:
qvB = m \frac{v^2}{r}
where
q is the electron charge
v is the speed
B is the magnetic field strength
m is the electron mass
r is the radius of the trajectory
By re-arranging the equation, we find the radius r:
r= \frac{mv}{qB}= \frac{(9.1 \cdot 10^{-31} kg)(6.95 \cdot 10^7 m/s)}{(1.6 \cdot 10^{-19} C)(3.00 \cdot 10^{-5} T)}=13.18 m

And finally we can calculate the centripetal acceleration, given by:
a_c =  \frac{v^2}{r}= \frac{(6.95 \cdot 10^7 m/s)^2}{13.18 m}=3.66 \cdot 10^{14} m/s^2
You might be interested in
what happens if a voltmeter is connected in series with other components of the circuit (i.e , ammeter, cell, battery, resistor
Talja [164]

Answer:the voltmeter measures the potential difference of the circuit,. Voltmeter is a device used to measure potential difference.

Explanation:

8 0
3 years ago
Describe a scenario when you could use energy but not do any work.
Harlamova29_29 [7]

Answer:

When you don't move, you still use energy. This energy is called potential energy, or, stored energy.

When you don't move or do work, you can use energy.

4 0
3 years ago
Describe how a planet, solar system, galaxy, and the universe are related in terms of size.
Alexus [3.1K]

- The Solar System contains the sun and objects that orbit it, including the eight planets, comets, and asteroids, and the Galaxy contains about 100 billion stars, of which the sun is one, as well as large clouds of gas and dust. - The universe contains all physical matter and energy

So Therefore Universe Is the biggest terms of size because it contains all physical matter and energy hope it helps

7 0
3 years ago
The density of aluminum is 2.7 × 103 kg/m3 . the speed of longitudinal waves in an aluminum rod is measured to be 5.1 × 103 m/s.
andrey2020 [161]
<span>The speed of longitudinal waves, S, in a thin rod = âšYoung modulus / density , where Y is in N/m^2. So, S = âšYoung modulus/ density. Squaring both sides, we have, S^2 = Young Modulus/ density. So, Young Modulus = S^2 * density; where S is the speed of the longitudinal wave. Then Substiting into the eqn we have (5.1 *10^3)^2 * 2.7 * 10^3 = 26.01 * 10^6 * 2.7 *10^6 = 26.01 * 2.7 * 10^ (6+3) = 70.227 * 10 ^9</span>
5 0
3 years ago
SP: Calculate the moment
ipn [44]

Answer:

Moment of the force is 20 N-m.

Explanation:

Given:

Force exerted by the person is, F=80\ N

Distance of application of force from the point about which moment is needed is, d=25\ cm=\frac{25}{100}\ m=0.25\ m

Now, we know that, moment of a force 'F' about a point at a perpendicular distance of 'd' from the same point is given as the product of the force and the perpendicular distance.

Therefore, the moment of the force about the end of the claw hammer is given as:

M=F\times d\\\\M=(80\ N)(0.25\ m)\\\\M=20\textrm{ N-m}

Hence, the moment of the force exerted by the person about the end of the claw hammer is 20 N-m.

6 0
3 years ago
Other questions:
  • A 1.25-kg ball begins rolling from rest with constant angular acceleration down a hill. If it takes 3.60 s for it to make the fi
    12·1 answer
  • Which of these is closest to the age of our solar system?
    9·1 answer
  • The man who discovered that even individual light particles have wave characteristics was:
    9·2 answers
  • Plz help I need the answers to this ASAP
    9·1 answer
  • 1. Calculate the force of gravity in newtons if your weight is 110 lbs?
    5·2 answers
  • How do I find the resultant force of a skydiver falling with gravity constant of 10 newtons and his weight is 70 kg??
    5·1 answer
  • The diagram below shows a light ray from a pencil hitting a mirror.
    5·2 answers
  • Surviving a ship wreck, what is the minimum mass of wood (density 60% that of sea water) necessary to support a 70kg woman stand
    6·1 answer
  • At atom whose valence electron shell is nearly full is ________ chemically reactive. a. not b. mildly c. highly d. the name of t
    13·2 answers
  • What determines the strength of a base?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!