1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kkurt [141]
3 years ago
9

The electrons in the beam of a television tube have a kinetic energy of 2.20 10-15 j. initially, the electrons move horizontally

from west to east. the vertical component of the earth's magnetic field points down, toward the surface of the earth, and has a magnitude of 3.00 10-5 t. (a) in what direction are the electrons deflected by this field component? due north due south due east due west (b) what is the magnitude of the acceleration of an electron in part (a)? m/s2
Physics
1 answer:
dalvyx [7]3 years ago
5 0
(a) The electrons move horizontally from west to east, while the magnetic field is directed downward, toward the surface. We can determine the direction of the force on the electron by using the right-hand rule:
- index finger: velocity --> due east
- middle finger: magnetic field --> downward
- thumb: force --> due north
However, we have to take into account that the electron has negative charge, therefore we have to take the opposite direction: so, the magnetic force is directed southwards, and the electrons are deflected due south.

b) From the kinetic energy of the electrons, we can find their velocity by using
K= \frac{1}{2}mv^2
where K is the kinetic energy, m the electron mass and v their velocity. Re-arranging the formula, we find
v= \sqrt{ \frac{2K}{m} }= \sqrt{ \frac{2 \cdot 2.20 \cdot 10^{-15} J}{9.1 \cdot 10^{-31} kg} }=6.95 \cdot 10^7 m/s

The Lorentz force due to the magnetic field provides the centripetal force that deflects the electrons:
qvB = m \frac{v^2}{r}
where
q is the electron charge
v is the speed
B is the magnetic field strength
m is the electron mass
r is the radius of the trajectory
By re-arranging the equation, we find the radius r:
r= \frac{mv}{qB}= \frac{(9.1 \cdot 10^{-31} kg)(6.95 \cdot 10^7 m/s)}{(1.6 \cdot 10^{-19} C)(3.00 \cdot 10^{-5} T)}=13.18 m

And finally we can calculate the centripetal acceleration, given by:
a_c =  \frac{v^2}{r}= \frac{(6.95 \cdot 10^7 m/s)^2}{13.18 m}=3.66 \cdot 10^{14} m/s^2
You might be interested in
A box with a mass of 40 kg sits at rest on a frictionless tile floor. with your foot, you apply a 20 N force in a horizontal dir
Grace [21]

Answer:

0.5 m/s²

Explanation:

according to Newton's second law, we are goven a relationship between force, mass and acceleration, with the formula:

F = m×a

F for force

m for mass

a for acceleration

we use the given data and get:

20 = 40×a

we find a=20/40=0.5m/s²

4 0
2 years ago
Read 2 more answers
State whether the following statement are true or false .
Klio2033 [76]
1. It’s true
4 ,7 ,8 is correct
5 0
3 years ago
A cello string 0.75 m long has a 220 hz fundamental frequency. find the wave speed along the vibrating string. answer in units o
maxonik [38]
For fundamental frequency of a string to occur, the length of the string has to be half the wavelength. That is,

1/2y = L, where L = length of the string, y = wavelength.

Therefore,
y = 2L = 2*0.75 =1.5 m

Additionally,
y = v/f Where v = wave speed, and f = ferquncy

Then,
v = y*f = 1.5*220 = 330 m/s
4 0
3 years ago
Write down an example scenario of an object that has acceleration
Grace [21]

Answer:

An object which experiences either a change in the magnitude or the direction of the velocity vector can be said to be accelerating. This explains why an object moving in a circle at constant speed can be said to accelerate - the direction of the velocity changes.

if a car turns a corner at constant speed, it is accelerating because its direction is changing. The quicker you turn, the greater the acceleration. So there is an acceleration when velocity changes either in magnitude (an increase or decrease in speed) or in direction, or both.

Explanation:

5 0
3 years ago
PLEASE HELPPP 100 POINTS HURRY !!!!Which diagram best illustrates the magnetic field of a bar magnet? A bar magnet with a north
Serggg [28]

I think this is right I hope this is right for you

7 0
3 years ago
Read 2 more answers
Other questions:
  • John traveled East at 10 m/s for ten
    15·1 answer
  • Substance X transfers thermal energy to substance Y through conduction. What is an accurate conclusion about the condition of bo
    5·2 answers
  • Two 20.0 g ice cubes at − 20.0 ∘ C are placed into 285 g of water at 25.0 ∘ C. Assuming no energy is transferred to or from the
    10·1 answer
  • How many grams of water can be cooled from 42 ∘c to 20 ∘c by the evaporation of 51 g of water? (the heat of vaporization of wate
    5·1 answer
  • PLEASEEEE HEEEEELP!!!!!
    14·1 answer
  • If love is the answer, then what is the question?
    8·2 answers
  • 30 POINTS!!
    14·1 answer
  • Find the final velocity
    11·1 answer
  • After turning on the power source connected to your two electrodes, we expect to see the microbeads moving through the solution.
    8·1 answer
  • A
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!