1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kkurt [141]
3 years ago
9

The electrons in the beam of a television tube have a kinetic energy of 2.20 10-15 j. initially, the electrons move horizontally

from west to east. the vertical component of the earth's magnetic field points down, toward the surface of the earth, and has a magnitude of 3.00 10-5 t. (a) in what direction are the electrons deflected by this field component? due north due south due east due west (b) what is the magnitude of the acceleration of an electron in part (a)? m/s2
Physics
1 answer:
dalvyx [7]3 years ago
5 0
(a) The electrons move horizontally from west to east, while the magnetic field is directed downward, toward the surface. We can determine the direction of the force on the electron by using the right-hand rule:
- index finger: velocity --> due east
- middle finger: magnetic field --> downward
- thumb: force --> due north
However, we have to take into account that the electron has negative charge, therefore we have to take the opposite direction: so, the magnetic force is directed southwards, and the electrons are deflected due south.

b) From the kinetic energy of the electrons, we can find their velocity by using
K= \frac{1}{2}mv^2
where K is the kinetic energy, m the electron mass and v their velocity. Re-arranging the formula, we find
v= \sqrt{ \frac{2K}{m} }= \sqrt{ \frac{2 \cdot 2.20 \cdot 10^{-15} J}{9.1 \cdot 10^{-31} kg} }=6.95 \cdot 10^7 m/s

The Lorentz force due to the magnetic field provides the centripetal force that deflects the electrons:
qvB = m \frac{v^2}{r}
where
q is the electron charge
v is the speed
B is the magnetic field strength
m is the electron mass
r is the radius of the trajectory
By re-arranging the equation, we find the radius r:
r= \frac{mv}{qB}= \frac{(9.1 \cdot 10^{-31} kg)(6.95 \cdot 10^7 m/s)}{(1.6 \cdot 10^{-19} C)(3.00 \cdot 10^{-5} T)}=13.18 m

And finally we can calculate the centripetal acceleration, given by:
a_c =  \frac{v^2}{r}= \frac{(6.95 \cdot 10^7 m/s)^2}{13.18 m}=3.66 \cdot 10^{14} m/s^2
You might be interested in
I dropped an apple (mass 0.1kg) from the window because i'm weird. (15m above the ground). How fast was it going when it hit the
Olegator [25]

Answer:

I think the answer is 1 m per second.

5 0
3 years ago
The molecule of magnet are independent _____________​
Bas_tet [7]

Answer:

The first is the electric field, which describes the force acting on a stationary charge and gives the component of the force that is independent of motion. The magnetic field, in contrast, describes the component of the force that is proportional to both the speed and direction of charged particles.

4 0
3 years ago
A spring with spring constant of 34 N/m is stretched 0.12 m from its equilibrium position. How much work must be done to stretch
Nesterboy [21]

Answer:0.253Joules

Explanation:

First, we will calculate the force required to stretch the string. According to Hooke's law, the force applied to an elastic material or string is directly proportional to its extension.

F = ke where;

F is the force

k is spring constant = 34N/m

e is the extension = 0.12m

F = 34× 0.12 = 4.08N

To get work done,

Work is said to be done if the force applied to an object cause the body to move a distance from its initial position.

Work done = Force × Distance

Since F = 4.08m, distance = 0.062m

Work done = 4.08 × 0.062

Work done = 0.253Joules

Therefore, work done to stretch the string to an additional 0.062 m distance is 0.253Joules

8 0
3 years ago
Two identical loudspeakers 2.00 m apart are emitting sound waves into a room where the speed of sound is 340 m/s. Abby is standi
Troyanec [42]

Answer:

The lowest possible frequency of sound is 971.4 Hz.

Explanation:

Given that,

Distance between  loudspeakers = 2.00 m

Height = 5.50 m

Sound speed = 340 m/s

We need to calculate the distance

Using Pythagorean theorem

AC^2=AB^2+BC^2

AC^2=2.00^2+5.50^2

AC=\sqrt{(2.00^2+5.50^2)}

AC=5.85\ m

We need to calculate the path difference

Using formula of path difference

\Delta x=AC-BC

Put the value into the formula

\Delta x=5.85-5.50

\Delta x=0.35\ m

We need to calculate the lowest possible frequency of sound

Using formula of frequency

f=\dfrac{nv}{\Delta x}

Put the value into the formula

f=\dfrac{1\times340}{0.35}

f=971.4\ Hz

Hence, The lowest possible frequency of sound is 971.4 Hz.

8 0
3 years ago
ANSWER QUICKLY IN LESS THAN A MINUTE!!EASY!​
luda_lava [24]

Answer:

I think it's 0 N 3rd choice

4 0
2 years ago
Other questions:
  • Why is ice harder than liquid water?
    15·1 answer
  • Your pencil is 11 cm long . How long is it in millimeters?
    7·1 answer
  • Describe how a distance time graph shows an object that is stationary
    10·2 answers
  • A free-falling golf ball strikes the ground and exerts a force on it. Which sentences are true about this situation? A golf ball
    10·2 answers
  • A laser beam of unknown wavelength passes through adiffraction grating having 5510 lines/cm after striking itperpendicularly. Ta
    7·1 answer
  • A soccer player kicks a ball with initial velocity of 10m/s at an angle of 30 degrees above the horizontal.....what is the magni
    12·1 answer
  • A clothes dryer in a home draws a current of 10 amps when connected on a special 220-volts household circuit.what is the resista
    9·1 answer
  • I need to catch up on late work
    13·1 answer
  • The type of torque wrench designed for tightening clamping bands on underground pipe is the ___________________
    15·2 answers
  • Find the direction of this
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!