Answer:
M g H / 2 = M g L / 2 initial potential energy of rod
I ω^2 / 2 = 1/3 M L^2 * ω^2 / 2 kinetic energy attained by rod
M g L / 2 = 1/3 M L^2 * ω^2 / 2
g = 3 L ω^2
ω = (g / (3 L))^1/2
Answer:
4.96 × 10⁵ Pa
Explanation:
F = mg

This force is evenly distributed on the three leg
radius, r = d/2
= 2.8 / 2
= 1.4 cm = 0.014 m
total cross sectional area of the three legs, A = 3*pi*r^2

Pressure due to weight,
P = Weight/A

P = 4.96 × 10⁵ Pa
It would take about 2 thirds of a second or .66666666 repeating of a second. please give brainliest?
Answer:
a) m_v = m_s ((
)² - 1) , b) m_v = 1.07 10⁻¹⁴ g
Explanation:
a) The angular velocity of a simple harmonic motion is
w² = k / m
where k is the spring constant and m is the mass of the oscillator
let's apply this expression to our case,
silicon only
w₉² =
k = w₀² m_s
silicon with virus
w² =
k = w² (m_v + m_s)
in the two expressions the constant k is the same and q as the one property of the silicon bar, let us equal
w₀² m_s = w² (m_v + m_s)
m_v = (
)² m_s - m_s
m_v = m_s ((
)² - 1)
b) let's calculate
m_v = 2.13 10⁻¹⁶ [(
)² - 1)]
m_v = 1.07 10⁻¹⁴ g
If my memory serves me well, if we want to know the velocity that an object is traveling, we must know the <span>direction and speed. Velocity includes two these points listed in the previous sentence which means the answer is D.</span>