Answer:
it's a chemistry change
Explanation:
this is because heat is causing permanent changes and can no longer be changed back to its original atate
Answer:
B is the answer
Explanation:
Because it a molecular mass of one
Ok first, we have to create a balanced equation for the dissolution of nitrous acid.
HNO2 <-> H(+) + NO2(-)
Next, create an ICE table
HNO2 <--> H+ NO2-
[]i 0.139M 0M 0M
Δ[] -x +x +x
[]f 0.139-x x x
Then, using the concentration equation, you get
4.5x10^-4 = [H+][NO2-]/[HNO2]
4.5x10^-4 = x*x / .139 - x
However, because the Ka value for nitrous acid is lower than 10^-3, we can assume the amount it dissociates is negligable,
assume 0.139-x ≈ 0.139
4.5x10^-4 = x^2/0.139
Then, we solve for x by first multiplying both sides by 0.139 and then taking the square root of both sides.
We get the final concentrations of [H+] and [NO2-] to be x, which equals 0.007M.
Then to find percent dissociation, you do final concentration/initial concentration.
0.007M/0.139M = .0503 or
≈5.03% dissociation.
Answer:
17.1195 grams of nitric acid are produced.
Explanation:

Moles of nitrogen dioxide :

According to reaction 3 moles of nitrogen dioxides gives 2 moles of nitric acid.
Then 0.5434 moles of nitrogen dioxides will give:
of nitric acid.
Mass of 0.3623 moles of nitric acid :

Theoretical yield = 22.8260 g
Experimental yield = ?


Experimental yield of nitric acid = 17.1195 g