Answer a:
<span>A 1.5 V battery, the electromagnet picked up an average of 6 paper clips, while with the 6.0 V battery, an average of 23 paper clips were picked up. Battery of 6.0V is 6.0/1.5 = 4 times stronger than battery of 1.5 V
Answer b:
</span><span>Ratio of the number of paper clips picked up using the 6.0 V battery to the number picked up using the 1.5 V battery is = 23/6 = 3.8 </span>≈ 4.
Answer c:
As the voltage power increase, more paper clips were picked up by electromagnet. This indicated that there is a direct relationship. Mathematically it can be expressed as:
Voltage Power α Number of paper clips that were picked up
N₂ + 3H₂ ⇒ 2NH₃
1mol : 2mol
3,72mol : 7,44mol
n = 7,44mol
M = 17g/mol
m = n * M = 7,44mol * 17g/mol = 126,48g
1 2 3 4 5 and how the question ask
<span>Let's </span>assume that water vapor has ideal gas
behavior. <span>
Then we can use ideal gas formula,
PV = nRT<span>
</span><span>Where, P is the pressure of the gas (Pa), V
is the volume of the gas (m³), n is the number
of moles of gas (mol), R is the universal gas constant ( 8.314 J mol</span></span>⁻¹ K⁻¹) and T is temperature in Kelvin.<span>
<span>
</span>P = 1 atm = 101325 Pa (standard pressure)
V = 13.97 L = 13.97 x 10</span>⁻³ m³<span>
n = ?
R = 8.314 J mol</span>⁻¹ K⁻¹<span>
T = 0 °C = 273 K (standard temperature)
<span>
By substitution,
</span>101325 Pa x 13.97x 10</span>⁻³
m³ = n x 8.314 J mol⁻¹ K⁻¹ x 273 K<span>
n = 0.624 mol
<span>
Hence, the moles of water vapor at STP is 0.624 mol.
According to the </span></span>Avogadro's constant, 1 mole of substance has 6.022 × 10²³ particles.
<span>
Hence, number of atoms in water vapor = 0.624 mol x </span>6.022 × 10²³ mol⁻¹
<span> = 3.758 x 10</span>²³<span>
</span>