Answer:
Explanation:
An industrial system consists of inputs, processes and outputs. The inputs are the raw materials, labor and costs of land,transport, power and other infrastructure. The processes include a wide range of activities that convert the raw material into finished products.
Explanation:
It is given that,
Speed of the sports car, v = 85 mph = 37.99 m/s
The radius of curvature, r = 525 m
Let
is the normal weight and
is the apparent weight of the person. Its apparent weight is given by :

So, 



or

Hence, this is the required solution.
<span>B) 0.6 N
I suspect you have a minor error in your question. Claiming a coefficient of static friction of 0.30N is nonsensical. Putting the Newton there is incorrect. The figure of 0.25 for the coefficient of kinetic friction looks OK. So with that correction in mind, let's solve the problem.
The coefficient of static friction is the multiplier to apply to the normal force in order to start the object moving. And the coefficient of kinetic friction (which is usually smaller than the coefficient of static friction) is the multiplied to the normal force in order to keep the object moving. You've been given a normal force of 2N, so you need to multiply the coefficient of static friction by that in order to get the amount of force it takes to start the shoe moving. So:
0.30 * 2N = 0.6N
And if you look at your options, you'll see that option "B" matches exactly.</span>
Answer:
4
Explanation:
The kilogram-meter per second (kg · m/s or kg · m · s -1 ) is the standard unit of momentum . Reduced to base units in the International System of Units ( SI ), a kilogram-meter per second is the equivalent of a newton-second (N · s), which is the SI unit of impulse .
Answer:
Wavelength
Explanation:
The wavelength of a transverse wave (where the oscillation occurs perpendicular to the direction of propagation of the wave) is defined as the distance between two consecutive crests ot two consecutive troughs.
In a longitudinal wave, where the oscillation occurs parallel to the direction of propagation of the wave, the wavelength is defined as the distance between two consecutive compressions or between two consecutive rarefactions.
Other important definitions for a wave are:
- Frequency: the number of complete cycles per second
- Period: the time needed for one complete cycle to occur
- Amplitude: the distance between the equilibrium position and the maximum displacement of the wave