I'm not sure...
I feel ya.
Answer:
8 Hz
Explanation:
Given that
Standing wave at one end is 24 Hz
Standing wave at the other end is 32 Hz.
Then the frequency of the standing wave mode of a string having a length, l, is usually given as
f(m) = m(v/2L), where in this case, m could be 1. 2. 3. 4 etc
Also, another formula is given as
f(m) = m.f(1), where f(1) is the fundamental frequency..
Thus, we could say that
f(m+1) - f(m) = (m + 1).f(1) - m.f(1) = f(1)
And as such,
f(1) = 32 - 24
f(1) = 8 Hz
Then, the fundamental frequency needed is 8 Hz
We assume that horn releases sound of constant frequency. In order for observer to observe different frequency either horn or observer or both must move.
This happens due to Doppler effect. It states that when position of source of sound and observer relative to each other changes, the observed frequency also changes. If the source emits sound of constant frequency than observed frequency will be either higher or lower than original.
When distance between source and observer increases the observed frequency will be lower. This is because same number of sound waves must cover greater distance so they have greater wavelength.
When distance between source and observer decreases the observed frequency will be higher. This is because same number of sound waves must cover smaller distance so they have smaller wavelength.
Wavelength and frequency are inversely proportional meaning when one increases the other drecreases.
From this explanation we can find answer for our question. <span>If we wanted the pitch of a horn to drop relative to an observer we need to move horn away from an observer.</span>
Answer:
The sponge must go
deep
Explanation:
If F = 6360 N, then it is required to find how deep can an object with this force hitting on a sponge get.
We know that, F = mgh
m is mass
g is acceleration due to gravity

So, the sponge must go
deep.
Solution :
Let
kg
m/s
Let
and
are the speeds of the disk
and
after the collision.
So applying conservation of momentum in the y-direction,





Therefore, the disk 2 have greater velocity and hence more kinetic energy after the collision.
Now applying conservation of momentum in the x-direction,




m/s
So, 
= 4.33 m/s
Therefore, speed of the disk 2 after collision is 4.33 m/s