<span> When raising an number to zero power you will always get 1. you raise both the numerator and the denominator</span>
2(8 4/5)+2(22/25)
2(44/5)+2(22/25)
2(220/25)+2(22/25)
(440/25)+(44/25)
484/25=P
Answer:
The answer is below
Step-by-step explanation:
Let x represent the number of single cone ice cream and let y represent the number of double cone ice cream.
Since the vendor stocks a maximum of 70 single cones and a maximum of 45 double cones. hence:
0 < x ≤ 70, 0 < y ≤ 45 (1)
The vendor expects to sell no more than 50 ice creams, hence:
x + y ≤ 50
Plotting the constraint using geogebra online graphing tool, we can see that the solution to the problem is at (5, 45)
Since the vendor sells single-cone ice-creams for $3 and double-cone ice-creams for $4.50, hence:
Revenue = 3x + 4.5y
At the point (5, 45), the revenue is:
Revenue = 3(5) + 4.5(45) = $217.5
Hi! I'm happy to help!
To solve this, we first need to look at the perimeter equation:
P=2L+2W
We don't know our length, so we can represent it with x. Since our width is 2 feet shorter than x, we can represent it with x-2. Now, we plug these values into our equation:
56=2x+(2(x-2))
Let's simplify what the width is by multiplying:
56=2x+2x-4
Now, let's combine our 2xs
56=4x-4
Now, we just need to solve for x in order to find our length and width.
First, we need to isolate x on one side of the equation. We can do this by adding 4 to both sides:
56=4x-4
+4 +4
60=4x
Now, all we have to do is divide both sides by 4 and x will be fully isolated:
60=4x
÷4 ÷4
15=x
Now that we know x, let's plug this into our previous equations:
L=x=15
<u>L=15</u>
W=x-2=15-2=13
<u>W=13</u>
To verify our answers, we can plug this into our perimeter equation:
56=2(15)+2(13)
56=30+36
56=56
After double checking our answers, we know that our length is 15 and our width is 13.
I hope this was helpful, keep learning! :D
B a counterclockwise rotation about the origin of 90°
under a counterclockwise rotation about the origin
a point ( x , y ) → (- y, x)
figure Q to figure Q'
( 4,2 ) → (- 2, 4 )
(7, 5 ) → (- 5, 7 )
(3, 7 ) → (- 7 , 3 )
(2, 4 ) → (- 4, 2 )
(5, 4 ) → (- 4, 5 )
the coordinates of the original points of the vertices of Q map to the corresponding points on the image Q'