Step-by-step explanation:
f(x)+q(x)
➜3x+5+0
➜3x+5
➜f(x)
<h3>Hence proved</h3>
Simplifying
2x2 + 6x + 4 = 24
Reorder the terms:
4 + 6x + 2x2 = 24
Solving
4 + 6x + 2x2 = 24
Solving for variable 'x'.
Reorder the terms:
4 + -24 + 6x + 2x2 = 24 + -24
Combine like terms: 4 + -24 = -20
-20 + 6x + 2x2 = 24 + -24
Combine like terms: 24 + -24 = 0
-20 + 6x + 2x2 = 0
Factor out the Greatest Common Factor (GCF), '2'.
2(-10 + 3x + x2) = 0
Factor a trinomial.
2((-5 + -1x)(2 + -1x)) = 0
Ignore the factor 2.
Subproblem 1
Set the factor '(-5 + -1x)' equal to zero and attempt to solve:
Simplifying
-5 + -1x = 0
Solving
-5 + -1x = 0
Move all terms containing x to the left, all other terms to the right.
Add '5' to each side of the equation.
-5 + 5 + -1x = 0 + 5
Combine like terms: -5 + 5 = 0
0 + -1x = 0 + 5
-1x = 0 + 5
Combine like terms: 0 + 5 = 5
-1x = 5
Divide each side by '-1'.
x = -5
Simplifying
x = -5
Answer
Find out how much money did she start with.
To proof
let us assume that the money she had be x.
As given
woman spent two thirds of her money

Money she had after spent two thirds of her money = Total money - money spent


As given she lost two thirds the remainder


we get

Money she had after lost two thirds the remainder = Money she had after spent two thirds of her money - she lost two thirds the remainder


As given
she had $4 left
thus

x = $36
she start with $36.
Hence proved