To solve this process it is necessary to consider the concepts related to the relations between pressure and temperature in an adiabatic process.
By definition the relationship between pressure and temperature is given by

Here
P = Pressure
T = Temperature
The ratio of specific heats. For air normally is 1.4.
Our values are given as,

Therefore replacing we have,


Solving for 


Therefore the maximum theoretical pressure at the exit is 
Answer:
0.16joules
Explanation:
Using the relation for The gravitational potential energy
E= Mgh
Where,
E= Potential energy
h = Vertical Height
M = mass
g = Gravitational Field Strength
To find the vertical component of angle of launch Where the angle is 22°
h= sin theta
So E = mghsintheta
= 0.18 x 0.98 x 0.253 sin22
=0.16joules
Explanation:
Answer:
I believe it is False.
Explanation:
Hope my answer has helped you!
Answer:
The answer is "
".
Explanation:
Its minimum velocity energy is provided whenever the satellite(charge 4 q) becomes 15 m far below the square center generated by the electrode (charge q).

It's ultimate energy capacity whenever the satellite is now in the middle of the electric squares:

Potential energy shifts:


Now that's the energy necessary to lift a satellite of 100 kg to 300 km across the surface of the earth.



This satellite is transmitted by it system at a height of 300 km and not in orbit, any other mechanism is required to bring the satellite into space.