1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yarga [219]
3 years ago
5

A nonconducting sphere has radius R = 1.29 cm and uniformly distributed charge q = +3.83 fC. Take the electric potential at the

sphere's center to be V0 = 0. What is V at radial distance from the center (a) r = 0.560 cm and (b) r = R? (Hint: See an expression for the electric field.)
Physics
1 answer:
zalisa [80]3 years ago
8 0

Answer:

a) -2.516 × 10⁻⁴ V

b) -1.33 × 10⁻³ V

Explanation:

The electric field inside the sphere can be expressed as:

E= \frac{kqr}{R^3}

The potential at a distance can be represented as:

V(r) - V(0) = -\int\limits^r_0 {\frac{kqr}{R^3} } \, dr^2

V(r) - V(0) = [\frac{qr^2}{8 \pi E_0R^3 }]₀

V(r) =   -[\frac{qr^2}{8 \pi E_0R^3 }]₀

Given that:

q = +3.83 fc = 3.83 × 10⁻¹⁵ C

r = 0.56 cm

 = 0.56 × 10⁻² m

R = 1.29 cm

  =  1.29 × 10⁻² m

E₀ = 8.85 × 10⁻¹² F/m

Substituting our values; we have:

V(r) = -\frac{(3.83*10^{-15}C)(0.560*10^{-2}m)^2}{8 \pi (8.85*10^{-12}F/m)(1.29*10^{-2}m)^3}

V(r) = -2.15  × 10⁻⁴ V

The difference between the radial distance  and center can be expressed as:

V(r) - V(0) = -\int\limits^R_0 {\frac{kqr}{R^3} } \, dr^2

V(r) - V(0) =  [\frac{qr^2}{8 \pi E_0R^3 }]^R

V(r) = -\frac{qR^2}{8 \pi E_0R^3 }

V(r) = -\frac{q}{8 \pi E_0R }

V(r) = -\frac{(3.83*10^{-15}C)}{8 \pi (8.85*10^{-12}F/m)(1.29*10^{-2}m)}

V(r) = -0.00133

V(r) = - 1.33 × 10⁻³ V

You might be interested in
Which statement best describes how work and power are different? a. To find work we need to know force and distance; to find pow
weqwewe [10]
A. To find work we need to know F and S; to find power we need to know F and V
6 0
3 years ago
What of the following does NOT influence resistance? *
Marina86 [1]

Answer:

D. Number of components

Explanation:

4 0
3 years ago
A projectile is shot at an angle 45 degrees to the horizontalnear the surface of the earth but in the absence of air resistance.
ivann1987 [24]

Answer:

v₂ = 176.24 m/s

Explanation:

given,

angle of projectile = 45°

speed = v₁ = 150 m/s

for second trail

speed = v₂ = ?

angle of projectile = 37°

maximum height attained formula,

H_{max}= \dfrac{v^2 sin^2(\theta)}{g}

now,

H_{max}= \dfrac{v_1^2 sin^2(\theta_1)}{g}

H_{max}= \dfrac{v_2^2 sin^2(\theta_2)}{g}

now, equating both the equations

\dfrac{v_2^2}{v_1^2}=\dfrac{sin^2(\theta_1)}{sin^2(\theta_2)}

\dfrac{v_2^2}{150^2}=\dfrac{sin^2(45^0)}{sin^2(37^0)}

   v₂² = 31061.79

   v₂ = 176.24 m/s

velocity of projectile would be equal to v₂ = 176.24 m/s

8 0
3 years ago
Identify each picture as either an inelastic collision or elastic collision
Ivan

Answer:

<u>Inelastic collision:</u>

A collision in which there is a loss of Kinetic Energy due to internal friction of the bodies colliding.

<u>Characteristics of an inelastic collision:</u>

  • <em>the momentum of the system is conserved</em>
  • <em>the momentum of the system is conservedloss of kinetic energy</em><u> </u>

<em>I</em><em>n</em><em> </em><em>a perfectly elastic collision</em><em>, the two bodies </em><em>that</em><em> </em><em>collide with each other stick together.</em>

<u>Elastic </u><u>collision</u><u>:</u>

A collision in which the kinetic energy of the two bodies, before and after the collision, remains the same.

<u>Characteristic</u><u>s</u><u> </u><u>of</u><u> </u><u>elastic</u><u> </u><u>collision</u><u>:</u>

  • <em>the</em><em> </em><em>momentum</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>system</em><em> </em><em>is</em><em> </em><em>conserved</em>
  • <em>no</em><em> </em><em>loss</em><em> </em><em>o</em><em>f</em><em> </em><em>kinetic</em><em> </em><em>energy</em>

In everyday life, no collision is perfectly elastic.

__________________

ANSWER:

<u>Given examples:</u>

  • Two cars colliding with each other form an example of inelastic collision.

<u>Reason:</u>

<em>(</em><em>T</em><em>hey</em><em> </em><em>lose</em><em> </em><em>kinetic</em><em> </em><em>energy</em><em> </em><em>and</em><em> </em><em>come</em><em> </em><em>to</em><em> </em><em>a</em><em> </em><em>stop</em><em> </em><em>after</em><em> </em><em>the</em><em> </em><em>collision</em><em>.</em><em>)</em>

  • A ball bouncing after colliding with a surface is an example of elastic collision

<u>Reason:</u>

<em>(a very less amount of kinetic energy is lost)</em>

7 0
2 years ago
A standing wave of the third overtone is induced in a stopped pipe, 2.5 m long. The speed of sound is The frequency of the sound
NemiM [27]

Answer:

f3 = 102 Hz

Explanation:

To find the frequency of the sound produced by the pipe you use the following formula:

f_n=\frac{nv_s}{4L}

n: number of the harmonic = 3

vs: speed of sound = 340 m/s

L: length of the pipe = 2.5 m

You replace the values of n, L and vs in order to calculate the frequency:

f_{3}=\frac{(3)(340m/s)}{4(2.5m)}=102\ Hz

hence, the frequency of the third overtone is 102 Hz

8 0
3 years ago
Other questions:
  • This illustration represents the compoundA)carbon oxide.B)carbon dioxide.C)carbon monoxide.EliminateD)monocarbon oxide.
    10·2 answers
  • Water is a fluid, all fluids
    13·1 answer
  • Suppose that at a price of $2.60, the quantity of output demanded is 17, and at a price of $6.30, the quantity of output demande
    7·1 answer
  • A shopper in a supermarket pushes a cart with a force of 35Ndirected at an angle of 25 degree below the horizontal. The forceis
    13·1 answer
  • List at least five examples of minerals and their common uses.
    8·1 answer
  • Summarize the evidence indicating that over several hundreds of years or more there have been variations in the level of the sol
    14·1 answer
  • When a light ray is reflected from a surface, the ratio of the angle of incidence to the angle of reflection is
    15·1 answer
  • Which best illustrates the relationships between a producer and a consumer
    6·1 answer
  • A string attached to a kite was maintained at an angle of 65.0° with the ground. If 120 m of string was reeled in to return the
    8·1 answer
  • What are the 27 vawels
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!