Answer:
8.25 V
Explanation:
We can ignore the 22Ω and 122Ω resistors at the bottom. Since there's a short across those bottom nodes, any current will go through the short, and none through those two resistors.
The 2Ω resistor and the 44Ω resistor are in parallel. The equivalent resistance is:
1 / (1 / (2Ω) + 1 / (44Ω)) = 1.913Ω
This resistance is in series with the 12Ω resistor. The equivalent resistance is:
1.913Ω + 12Ω = 13.913Ω
This resistance is in parallel with the 24Ω resistor. The equivalent resistance is:
1 / (1 / (13.913Ω) + 1 / (24Ω)) = 8.807Ω
Finally, this resistance is in series with the 4Ω resistor. The equivalent resistance of the circuit is:
8.807Ω + 4Ω = 12.807Ω
The current through the battery is:
12 V / 12.807Ω = 0.937 A
The voltage drop across the 4Ω resistor is:
(0.937 A) (4Ω) = 3.75 V
So the voltage between the bottom nodes and the top nodes is:
12 V − 3.75 V = 8.25 V
When the current flow ceases, the magnetic flow also decreases
Answer:
yes
Explanation:
If you've ever heard of lake effect snow that is when cold air mass moves across long expanses of warmer lake water. The lower layer of air, heated up by the lake water, picks up water vapor from the lake and rises up through the colder air above; the vapor then freezes and is deposited on the leeward (downwind) shore. this is most common with lake Michigan when cold air travels down from Canada making the neighboring states colder, so YES, being near any body of water can effect the climate.
I hope this helps