1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivanshal [37]
3 years ago
15

A baseball leaves a bat with a horizontal velocity of 20.0 m/s. When it has left the bat for a time of 0.250 s (Assume air resis

tance is negligible). How far will it have moved horizontally?
Physics
1 answer:
miss Akunina [59]3 years ago
5 0

Answer:

The distance is 5 m.

Explanation:

Given that,

Horizontal velocity = 20.0 m/s

Time t = 0.250 s

We need to calculate the horizontal distance

The distance traveled by the baseball with horizontal velocity in time t is given by

Using formula for horizontal distance

d = v\times t

d = 20.0\times0.250

d=5\ m

Hence, The distance is 5 m.

You might be interested in
Determine the thrust that a boat with a volume of 1.2m³ receives when it is stranded at sea. The density of seawater is 1020kg /
puteri [66]

Answer:

The maximum possible up-thrust on the boat is 11,995.2 N

Explanation:

According to Archimedes' principle, the thrust received by an object immersed a fluid is equal to the weight of the fluid displaced;

The given parameter of the boat in sea water are;

The volume of the boat = 1.2 m³

The density of seawater = 1020 kg/m³

Density = Mass/Volume

Therefore, Mass = Density × Volume

The maximum volume of water that the boat displaces = 1.2 m³

The mass of the water displaced by the boat = (Density of seawater) × (Volume of seawater displaced)

∴ The maximum possible mass of the water displaced by the boat = 1.2 m³ × 1020 kg/m³ = 1224 kg

The maximum possible mass of the water displaced by the boat, m = 1224 kg

Weight = Mass, m × g

Where;

g = The acceleration due to gravity = 9.8 m/s²

The up-thrust on the boat = The weight of the seawater displaced

∴ The maximum possible up-thrust on the boat = m × g = 1224 kg × 9.8 m/s² = 11,995.2 N

The maximum possible up-thrust on the boat = 11,995.2 N.

3 0
2 years ago
A 2.0 kg block has a rope attached to the block on a table and is pulled with a force of 8.0 N. The block accelerated at 2.5m/s^
Masja [62]

Answer:

0.15

Explanation:

Assuming the rope is horizontal, sum the forces in the y direction:

∑F = ma

N − mg = 0

N = mg

Sum the forces in the x direction:

∑F = ma

F − Nμ = ma

Substitute:

F − mgμ = ma

mgμ = F − ma

μ = (F − ma) / (mg)

Plug in values:

μ = (8.0 N − 2.0 kg × 2.5 m/s²) / (2.0 kg × 9.8 m/s²)

μ = 0.15

3 0
2 years ago
Determine the binding energy of an F-19 nucleus. The F-19 nucleus has a mass of 18.99840325 amu. A proton has a mass of 1.00728
Anvisha [2.4K]

Answer:

Energy = 1.38*10^13 J/mol

Explanation:

Total number of proton in F-19 = 9

Total number of neutron in F-19 = 10

Expected Mass of F-19  

= 9*1.007 + 10*1.008 = 19.152 u

Actual  mass of F-19 = 18.998 u

Energy of one particle of F-19 = 931.5*Δm = 931.5*(19.152-18.998)

= 143.234 MeV

Energy of one mole of F-19 = 143.234*10^6*1.6*10^-19*6.022*10^23  

= 1.38*10^13 J/mol

8 0
3 years ago
An automobile engine has an efficiency of 22.0% and produces 2510 J of work. How much heat is rejected by the engine
katrin [286]

Answer:

If efficiency is .22 then  W = .22 * Q   where Q is the heat input

Heat Input    Q = 2510 / .22 = 11,400 J

Heat rejected = 11.400 - 2510 = 8900  J of heat wasted

Also, 8900 J / (4.19 J / cal) = 2120 cal

5 0
3 years ago
The half-life of Iodine-131 is 8.0252 days. If 14.2 grams of I-131 is released in Japan and takes 31.8 days to travel across the
MakcuM [25]

Answer:

Explanation:

Half-life problems are modeled as exponential equations.  The half-life formula is P=P_o\left (\dfrac{1}{2} \right)^{\frac{t}{k}} where P_o is the initial amount, k is the length of the half-life, t is the amount of time that has elapsed since the initial measurement was taken, and P is the amount that remains at time t.

P=14.2\left (\dfrac{1}{2} \right)^{\frac{t}{8.0252}}

<u>Deriving the half-life formula</u>

If one forgets the half-life formula, one can derive an equivalent equation by recalling the basic an exponential equation, y=a b^{t}, where t is still the amount of time, and y is the amount remaining at time t.  The constants a and b can be solved for as follows:

Knowing that amount initially is 14.2g, we let this be time zero:

y=a b^{t}

(14.2)=ab^{(0)}

14.2=a *1

14.2=a

So, a=14.2, which represents out initial amount of the substance, and our equation becomes: y=14.2 b^{t}

Knowing that the "half-life" is 8.0252 days (note that the unit here is "days", so times for all future uses of this equation must be in "days"), we know that the amount remaining after that time will be one-half of what we started with:

\left(\frac{1}{2} *14.2 \right)=14.2 b^{(8.0252)}

\dfrac{7.1}{14.2}=\dfrac{14.2 b^{8.0252}}{14.2}

0.5=b^{8.0252}

\sqrt[8.0252]{\frac{1}{2}}=\sqrt[8.0252]{b^{8.0252}}

\sqrt[8.0252]{\frac{1}{2}}=b

Recalling exponent properties, one could find that  \left ( \frac{1}{2} \right )^{\frac{1}{8.0252}}=b, which will give the equation identical to the half-life formula.  However, recalling this trivia about exponent properties is not necessary to solve this problem.  One can just evaluate the radical in a calculator:

b=0.9172535661...

Using this decimal approximation has advantages (don't have to remember the half-life formula & don't have to remember as many exponent properties), but one minor disadvantage (need to keep more decimal places to reduce rounding error).

So, our general equation derived from the basic exponential function is:

y=14.2* (0.9172535661)^t  or y=14.2*(0.5)^{\frac{t}{8.0252}} where y represents the amount remaining at time t.

<u>Solving for the amount remaining</u>

With the equation set up, substitute the amount of time it takes to cross the Pacific to solve for the amount remaining:

y=14.2* (0.9172535661)^{(31.8)}          y=14.2*(0.5)^{\frac{(31.8)}{8.0252}}

y=14.2* 0.0641450581                    y=14.2*(0.5)^{3.962518068}

y=0.9108598257                              y=14.2* 0.0641450581

                                                        y=0.9108598257

Since both the initial amount of Iodine, and the amount of time were given to 3 significant figures, the amount remaining after 31.8days is 0.911g.

8 0
1 year ago
Other questions:
  • Although the evidence is weak, there has been a concern in recent years over possible health effects from the magnetic fields ge
    8·1 answer
  • A tennis player receives a shot with the ball (0.0600 kg) traveling horizontally at 22.0 m/s and returns the shot with the ball
    13·1 answer
  • Norepinephrine and epinephrine influence all of the following except __________ functioning.
    7·2 answers
  • Please help ill give brainliest.
    10·2 answers
  • Why is mass a better unit for measuring matter then weight
    6·2 answers
  • 7. A ball of mass m makes a head-on elastic collision with a second ball (at rest) and rebounds with a speed equal to 0.450 its
    6·1 answer
  • • The net force acting on an object equals the applied force plus the force of friction.
    14·1 answer
  • Which property of a substance can be determined using a pH indicator?
    11·2 answers
  • Which of the following is NOT an argument for showing that the Earth must be round: a. during an eclipse of the Moon, the shadow
    13·1 answer
  • Suppose that Hubble's constant were H0 = 51 km/s/Mly (which is not its actual value). What would the approximate age of the univ
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!