Answer:
8 moles
Explanation:
When we are asked to convert from grams of a substance into moles, we have to use the substance's molar mass.
Meaning that for this problem, we'll <em>use the molar mass of hydrogen peroxide</em> (H₂O₂), as follows:
There are 8 moles in 272 grams of hydrogen peroxide.
The average kinetic energy of a collection of gas particles depends on the temperature of the gas and nothing else.
Answer: 4
Explanation:
Principle Quantum Numbers: This quantum number describes the size of the orbital. It is represented by n.
Azimuthal Quantum Number: This quantum number describes the shape of the orbital. It is represented as 'l'. The value of l ranges from 0 to (n-1). For l = 0,1,2,3... the orbitals are s, p, d, f...
Magnetic Quantum Number: This quantum number describes the orientation of the orbitals. It is represented as
. The value of this quantum number ranges from
. When l = 2, the value of
will be -2, -1, 0, +1, +2.
Given : a f subshell, thus l = 3 , Thus the subshells present would be 3, 2, 1, 0 and thus n will have a value of 4.
Also electrons give are 32.
The formula for number of electrons is
.


Thus principal quantum no will be n= 4.
Answer:
C₃H₈(g) + 6 H₂O(g) ⇒ + 10 H₂(g) + 3 CO₂(g)
Explanation:
Propane can be turned into hydrogen by the two-step reforming process.
In the first step, propane and water react to form carbon monoxide and hydrogen. The balanced chemical equation is:
C₃H₈(g) + 3 H₂O(g) ⇒ 3 CO(g) + 7 H₂(g)
In the second step, carbon monoxide and water react to form hydrogen and carbon dioxide. The balanced chemical equation is:
CO(g) + H₂O(g) ⇒ H₂(g) + CO₂(g)
In order to get the net chemical equation for the overall process, we have to multiply the second step by 3 and add it to the first step. Then, we cancel what is repeated.
C₃H₈(g) + 3 H₂O(g) + 3 CO(g) + 3 H₂O(g) ⇒ 3 CO(g) + 7 H₂(g) + 3 H₂(g) + 3 CO₂(g)
C₃H₈(g) + 6 H₂O(g) ⇒ + 10 H₂(g) + 3 CO₂(g)
<span>Equation:2H2(g) + O2(g) → 2H2O(g)
</span><span>
Smaller container means less volume, and the molecules will hit the walls of the container more frequently because there's less space available and the pressure will go up. I guess this would mean that the side with fewer moles would be favored as a result. We count the number of moles on the reactants and products and find that there are fewer moles on the product side, so I guess this would favor the product formation.
</span>