The empirical formula : C₂Cl₇
The molecular formula : C₁₀Cl₃₅
<h3>Further explanation</h3>
Given
8.81 g Carbon
91.2 g Chlorine
Molar Mass: 1362.5 g/mol
Required
The empirical formula and molecular formula
Solution
Mol ratio :
C = 8.81 g : 12.011 g/mol =0.733
Cl = 91.2 g : 35,453 g/mol = 2..572
Divide by 0.733
C : Cl = 1 : 3.5 = 2 : 7
The empirical formula : C₂Cl₇
(The empirical formula)n = the molecular formula
(C₂Cl₇)n = 1362.5
(2x12.011+7x35.453)n=1362.5
(272.193)n=1362.5
n = 5
Answer:
The correct option is OA.
C2H4O2 + NaHCO3 - NaC2H302 + H2O + CO2
Explanation:
To solve this you have to check the number of elements in both sides of the equation.
Explanation:
So the gas pressure of a helium balloon arises from the impact of the collisions of the helium atoms between themselves and with the inside surface of the balloon. Of course, the outside atmosphere similarly exerts a pressure on the outside of the balloon.
Answer:
53.1 mL
Explanation:
Let's assume an ideal gas, and at the Standard Temperature and Pressure are equal to 273 K and 101.325 kPa.
For the ideal gas law:
P1*V1/T1 = P2*V2/T2
Where P is the pressure, V is the volume, T is temperature, 1 is the initial state and 2 the final state.
At the eudiometer, there is a mixture between the gas and the water vapor, thus, the total pressure is the sum of the partial pressure of the components. The pressure of the gas is:
P1 = 92.5 - 2.8 = 89.7 kPa
T1 = 23°C + 273 = 296 K
89.7*65/296 = 101.325*V2/273
101.325V2 = 5377.45
V2 = 53.1 mL
Answer:
[H⁺] = 3.16 × 10⁻⁵ mol/L
Explanation:
Given data:
pH of solution = 4.5
Hydrogen ion concentration = ?
Solution;
pH = -log [H⁺]
we will rearrange this formula:
[H⁺] = 10∧-pH
[H⁺] = 10⁻⁴°⁵
[H⁺] = 3.16 × 10⁻⁵ mol/L