I would say it should be Einstein's famous equation of e=mc^2 which means energy =mass x the speed of light squared. With this equation Einstein showed that energy comes from a mass travelling at the speed of light squared which is a fundamental equation to explain physical phenomena.
The answer is C. Hydrogen Bond
Answer:
(a) The rate of formation of K2O is 0.12 M/s.
The rate of formation of N2 is also 0.12 M/s
(b) The rate of decomposition of KNO3 is 0.24 M/s
Explanation:
(a) From the equation of reaction, the mole ratio of K2O to O2 is 2:5.
Rate of formation of O2 is 0.3 M/s
Therefore, rate of formation of K2O = (2×0.3/5) = 0.12 M/s
Also from the equation of reaction, mole ratio of N2 to O2 is 2:5.
Rate of formation of N2 = (2×0.3/5) = 0.12 M/s
(b) From the equation of reaction, mole ratio of KNO3 to O2 is 4:5.
Therefore, rate of decomposition of KNO3 = (4×0.3/5) = 0.24 M/s
Answer:
1360kJ are evolved
Explanation:
When 1mole of H2 reacts with 1/2 moles O2 producing 1 mole of water and 241.8kJ.
To solve this question we need to find the limiting reactant knowing were added 90g of H2 and 90g of O2 as follows:
<em>Moles H2 -Molar mass: 2g/mol-</em>
90g H2 * (1mol / 2g) = 45 moles
<em>Moles O2 -Molar mass: 32g/mol-</em>
90g * (1mol / 32g) = 2.81moles
For a complete reaction of 2.81 moles of O2 are needed:
2.81 moles O2 * (1mol H2 / 1/2 mol O2) = 5.62 moles H2
As there are 45 moles, H2 is the excess reactant and O2 the limiting reactant.
As 1/2 moles O2 produce 241.8kJ, 2.81 moles will produce:
2.81 moles O2 * (241.8kJ / 1/2moles O2) =
<h3>1360kJ are evolved</h3>
Answer:
E
Explanation:
burning a substance changes it chemically.