Answer:
Uses of various electromagnetic waves depend on their relative energy.
Explanation:
The electromagnetic spectrum is the term used by scientists to describe the entire range of light that exists from radio waves to gamma rays. Electromagnetic waves is a wave of alternating electric and magnetic fields. The electromagnetic spectrum is a continuum of all electromagnetic waves arranged according to frequency and wavelength. The sun, earth, and other bodies radiate electromagnetic energy of varying wavelengths. Electromagnetic energy passes through space at the speed of light in the form of sinusoidal waves. The spectrum of waves is divided into sections based on wavelength. The shortest waves are gamma rays, which have wavelengths of 10^-6 microns or less. The longest waves are radio waves, which have wavelengths of many kilometers.
The application of various electromagnetic waves in science and technology depends on the energy of the wave. Electromagnetic waves that possess very high amount of energy are used in medical diagnosis, treatment of tumors, searching of baggage and detection of flaws in metal casting. Examples of such electromagnetic waves include gamma rays and xrays.
Some part of the electromagnetic spectrum possess energy enough to excite chemical bonds and produce spectra characteristic of certain functional groups in molecules. The ultraviolet and infrared rays fall into this category.
Some portion of the spectrum possesses very low energy and long wavelength and are mostly used for communication, mild medical diagnosis and resonance imaging/spectroscopy. Radio waves fall into this category.
Answer:
An object with a high mass close to the Earth could be sent out into a collision course with the asteroid, knocking it off course. When the asteroid is still far from the Earth, a means of deflecting the asteroid is to directly alter its momentum by colliding a spacecraft with the asteroid.
Hope it helps!!
ClBr, two nonmetals
Hope this helps you
The answer is 57.14%.
First we need to calculate molar mass of <span>NaHCO3. Molar mass is mass of 1 mole of a substance. It is the sum of relative atomic masses, which are masses of atoms of the elements.
Relative atomic mass of Na is 22.99 g
</span><span>Relative atomic mass of H is 1 g
</span><span>Relative atomic mass of C is 12.01 g
</span><span>Relative atomic mass of O is 16 g.
</span>
Molar mass of <span>NaHCO3 is:
22.99 g + 1 g + 12.01 g + 3 </span>· <span>16 g = 84 g
Now, mass of oxygen in </span><span>NaHCO3 is:
3 </span>· 16 g = 48 g
mass percent of oxygen in <span>NaHCO3:
48 g </span>÷ 84 g · 100% = 57.14%
Therefore, <span>the mass percent of oxygen in sodium bicarbonate is 57.14%.</span>
Rris is how u right it Mg=? Because it ask u a question and then you put the equal sign and then you put the question mark because you don't know it yet