Stars having less mass collapses early than those with more mass. This can be explained by Einstein's equation E=mc².
According to this equation, mass of stars is converted into light due to thermonuclear reactions occuring in the core of star which acts as engine of the stars. This thermonuclear reactions keeps star alive. Thermonuclear reactions occurs slowly in massive stars hence massive stars live more than light stars.
The answer is 2.5 times heavier than on Earth !!
so the answer is C !!
Answer:
θ=108rad
t =10.29seconds
α=-8.17rad/s²
Explanation:
Given that
At t=0, Wo=24rad/sec
Constant angular acceleration =30rad/s²
At t=2, θ=432rad as it try to stop because the circuit break
Angular motion
W=Wo+αt
θ=Wot+1/2αt²
W²=Wo²+2αθ
We need to find θ between 0sec to 2sec when the wheel stop
a. θ=Wot+1/2αt²
θ=24×2+1/2×30×2²
θ=48+60
θ=108rad.
b. W=Wo+αt
W=24+30×2
W=84rad/s
This is the final angular velocity which is the initial angular velocity when the wheel starts to decelerate.
Wo=84rad/sec
W=0rad/s, because the wheel stop at θ=432rad
Using W²=Wo²+2αθ
0²=84²+2×α×432
-84²=864α
α=-8.17rad/s²
It is negative because it is decelerating
Now, time taken for the wheel to stop
W=Wo+αt
0=84-8.17t
-84=-8.17t
Then t =10.29seconds.
a. θ=108rad
b. t =10.29seconds
c. α=-8.17rad/s²
Answer:
The power exerted by the student is 51.2 W
Explanation:
Given;
extension of the elastic band, x = 0.8 m
time taken to stretch this distance, t = 0.5 seconds
the spring constant, k = 40 N/m
Apply Hook's law;
F = kx
where;
F is the force applied to the elastic band
k is the spring constant
x is the extension of the elastic band
F = 40 x 0.8
F = 32 N
The power exerted by the student is calculated as;
P = Fv
where;
F is the applied force
v is velocity = d/t
P = F x (d/t)
P = 32 x (0.8 /0.5)
P = 32 x 1.6
P = 51.2 W
Therefore, the power exerted by the student is 51.2 W