The fatal current is 51 mA = 0.051 Ampere.
The resistance is 2,050Ω .
Voltage = (current) x (resistance)
= (0.051 Ampere) x (2,050 Ω) = 104.6 volts .
==================
This is what the arithmetic says IF the information in the question
is correct.
I don't know how true this is, and I certainly don't plan to test it,
but I have read that a current as small as 15 mA through the
heart can be fatal, not 51 mA .
If 15 mA can do it, and the sweaty electrician's resistance is
really 2,050 Ω, then the fatal voltage could be as little as 31 volts !
The voltage at the wall-outlets in your house is 120 volts in the USA !
THAT's why you don't want to stick paper clips or a screwdriver into
outlets, and why you want to cover unused outlets with plastic plugs
if there are babies crawling around.
The answer is D. Isotopes.
Hope that helped.
The amount of energy it takes to lift a box might be a function of the weight of the objects inside the box. Work is proportional to force and distance. The force of the box is the weight itself of the box. Hence the answer to this problem is B.
Answer:
The work done required on the coin during the displacement is 21.75 w.
Explanation:
Given that,
A coin slides over a friction-less plane i.e friction force = 0.
The co-ordinate of the given point is (1.40 m, 7.20 m).
The position vector of the given point is represented by
.
The displacement of the coin is

The force has magnitude 4.50 N and its makes an angle 128° with positive x axis.
Then x component of the force = 4.50 cos128°
The y component of the force = 4.50 sin128°
Then the position vector of the force is


We know that,
work done is a scalar product of force and displacement.


=(-2.77×1.40+ 3.56×7.20) w
=21.75 w
The work done required on the coin during the displacement is 21.75 w.
Angular momentum is conserved in the above examples such as the ice skater, the torque or the rotating effect of the force is almost equal to zero because there is negligible friction between the skates and the ice.
<h3>What is principle of conservation of angular momentum?</h3>
The principle of conservation of angular momentum states that the total angular momentum acting on an object is constant, provided there is no external torque acting on the object.
Angular momentum of a system is conserved as long as there is no net external torque acting on the system.
<h3>Examples of conservation of angular momentum</h3>
- the spinning ice skater
- someone spinning in an office chair
- a child spinning on roller coaster
Thus, angular momentum is conserved in the above examples such as the ice skater, the torque or the rotating effect of the force is almost equal to zero because there is negligible friction between the skates and the ice.
Learn more about angular momentum here: brainly.com/question/7538238
#SPJ1