Answer:
Great question!The color of grass leaves (usually green) is mostly due to the absorbance of the other wavelengths of visible light by chlorophyll. Therefore, any differences in gene expression (that ultimately determine phenotype) that affect the concentration of chlorophyll in the leaf will, in turn, affect the color of that leaf. My guess is that, in the absence of light, you could still measure chlorophyll concentration, and assume what the color would be. However, you need transmitted (reflected) light in order to perceive color. I don't know, if a tree falls in the forest, and none is around to hear it, does it make a sound? Hope this helps. Keep the questions coming!
Explanation:
Please mark as Brainliest
Hope it helped
:)
Answer:
Explanation:
K₂CrO₄ + ( COONa )₂ + 2BaCl₂ = Ba CrO₄ + ( COO ) ₂ Ba + 2 KCl + 2 NaCl
.033 M .053 M
Ksp of Ba CrO₄ is 2.10×10⁻¹⁰
Ksp of ( COO ) ₂ Ba is 1.30×10⁻⁶
A ) Ksp of Ba CrO₄ is less so it will precipitate out first .
B) Ksp = 2.10×10⁻¹⁰
Ba CrO₄ = Ba⁺² + CrO₄⁻²
C .033
C x .033 = 2.10×10⁻¹⁰
C = 63.63 x 10⁻¹⁰ M
Ba⁺² must be present in concentration = 63.63 x 10⁻¹⁰ M
C)
90% of precipitation of barium oxalate
concentration of oxalate to precipitate out = .9 x .0532 = .04788
( COO ) ₂ Ba = (COO)₂⁻² + Ba⁺²
.04788 M C
C x .04788 = 1.30×10⁻⁶
C = 27.15 x 10⁻⁶ M .
Answer: It is AN combustion
reaction.
Explanation:
Explanation:
Alkenes react in the cold with pure liquid bromine, or with a solution of bromine in an organic solvent like tetrachloromethane. The double bond breaks, and a bromine atom becomes attached to each carbon. The bromine loses its original red-brown color to give a colorless liquid. In the case of the reaction with ethene, 1,2-dibromoethane is formed.