The activation energy Ea can be related to rate constant (k) at temperature (T) through the equation:
ln(k2/k1) = Ea/R[1/T1 - 1/T2]
where :
k1 is the rate constant at temperature T1
k2 is the rate constant at temperature T2
R = gas constant = 8.314 J/K-mol
Given data:
k1 = 0.543 s-1; T1 = 25 C = 25+273 = 298 K
k2 = 6.47 s-1; T = 47 C = 47+273 = 320 K
ln(6.47/0.543) = Ea/8.314 [1/298 - 1/320]
2.478 = 2.774 *10^-5 Ea
Ea = 0.8934*10^5 J = 89.3 kJ
The answer is (2) equal to. In redox reactions, you can't just lose electrons somewhere. If an electrons is lost by one, it must be gained by another. Hence, the importance of balancing redox reactions.
Atoms are the smallest form of the substance. examples of atoms are in elemental forms such as copper, helium, silver. Diatomic molecules are made up of identical atoms. Examples are I2.. F2 and Br2. Formula units are those compounds that are made up of two or more elements such as -No2, KMnO4,<span>C3H8, MgCl2, HgBr2, Ba(OH)2</span>
Answer:
The elements in__Group_ 0 of the Periodic Table are called the_noble__gases. They are generally __unreactive_. because they have a__full_outer shell of electrons. So they do not need to gain__lose_or share _electrons_ with other atoms.