We know that the source of light in the universe is the Sun. Hence, the light we see as moonlight travels from the Sun's surface, to the moon, then to Earth. So, before being able to solve this problem, we have to know the distance between the Sun and the moon, and the distance between the moon and Earth. In literature, these values are 3.8×10⁵ km (Sun to moon) and 384,400 km (moon to Earth). Knowing that the speed of light is 300,000 km per second, then the total time would be
Time = distance/speed
Time = (3.8×10⁵ km + 384,400 km)/300,000 km/s
Time = 2.548 seconds
Thus, it only takes 2.548 for the light from the Sun to reach to the Earth as perceived to be what we call moonlight.
The maximum speed is 10.4 m/s
Explanation:
For a body in uniform circular motion, the centripetal acceleration is given by:

where
v is the linear speed
r is the radius of the circular path
In this problem, we have the following data:
- The maximum centripetal acceleration must be

where
is the acceleration of gravity. Substituting,

- The radius of the turn is
r = 10 m
Therefore, we can re-arrange the equation to solve for v, to find the maximum speed the ride can go at:

Learn more about centripetal acceleration:
brainly.com/question/2562955
#LearnwithBrainly
Answer:
Your answer is: False
It is called a resting heart rate for a reason : )
Explanation:
Hope this helped : )