Answer:
impulse acting on it
Explanation:
The impulse is defined as the product between the force applied to an object (F) and the time interval during which the force is applied (
):

We can prove that this is equal to the change in momentum of the object. In fact, change in momentum is given by:

where m is the mass and
is the change in velocity. Multiplying and dividing by
, we get

and since
is equal to the acceleration, a, we have

And since the product (ma) is equal to the force, we have

which corresponds to the impulse.
Given the following choices;
A) less than your true weight, mg.
B) equal to your true weight, mg.
C) more than your true weight, mg.
D) could be more or less than your true weight, mg, depending on the value of the speed.
The answer is; C
This is due to G-force. These are the perception of the weight of an object that is accelerating against gravity. We experience 1 g force on the surface of the earth because the ground exerts an upward exertion against gravity preventing as from falling to the center of the earth.
An object with non-zero mass (even negligible mass is non-zero) will never reach the speed of light. Due to relativistic effects, each "unit" of acceleration becomes less effective at increasing your velocity (relative to some other object, of course) as your relative velocity approaches the speed of light.
And even if there was a way, If you would accelerate to the 99,99% of the speed light in just 1 second, you would experience a G-force of aprox. 30,600,000 g's which is enough to kill you in a few seconds
Using the formula v=f times lambada
then v=the speed of light.
and f=what’s we’re looking for
and lambada=the wavelength.
so then you sub what you have (v and lambada) in the formula.
then multiply the frequency(f) by the given wavelength and then solve for f
False, wood is a solid structure that is not see through