13.0m/s
1.2m/s
Explanation:
Given parameters:
Initial speed of the body = 7.1m/s
time taken = 2.23s
Acceleration = 2.64m/s²
Unknown:
Final speed = ?
Solution:
Acceleration is the rate of change of velocity with time.
a = 
a = acceleration
V = final speed
U = initial speed
T = time taken
Input the variables and solve for V;
2.64 =
V - 7.1 = 5.9 expression 1
V = 5.9 + 7.1 = 13.0m/s
B
Using the same parameters, the speed after a uniform deceleration of -2.64m/s², the negative sign implies deceleration;
from expression 1;
V - 7.1 = -5.9
V = -5.9 + 7.1 = 1.2m/s
learn more:
Acceleration brainly.com/question/3820012
#learnwithBrainly
She does 200J .
We know she uses 20N of force and 10m is the distance. We multiply both numbers and we are given our answer of 200J. Hope this was helpful. :)
Answer:
A) Out of the page.
Explanation:
Right-hand rule points the direction of the magnetic field at any point.
<u>Top wire</u>: Current is to the left. Point your thumb to the left and curl your other fingers around the wire. The tips of the four fingers points the direction of the field at that point. In this case, out of the page.
<u>Bottom wire</u>: Current is to the right. Point your thumb to the right and curl your other fingers around the wire. The tips of the four finger points out of the page again.
So, the total field produced by both wires is directed out of the page.
Another method to figure out the direction is the mathematical method.
Use the B-field formula:

The cross product between the direction of the current and the target position gives the direction of the B-field. If the left is -x direction and downwards is the -y direction, then
for the top wire.
for the bottom wire.
Potential energy is high and kinetic is equal i believe.
Answer:
Explanation:
KE = ½mv² = ½(6.8)8² = 217.6 J
round as appropriate because that result is way too much precision for the inputs provided. Arguably should be 200 J based on the single significant digit of the velocity.