Answer:
x ≠ 4 or -2
Step-by-step explanation:
the denominator cannot be zero, so factor the bottom equation to get the zeros and those are the domain restrictions.
3x^2 - 6x - 24 ≠ 0
3(x^2 - 2x - 8) ≠ 0 (factor out a 3)
3(x - 4)(x + 2) ≠ 0 (factor equation)
x ≠ 4, x ≠ -2 (use zero product property to find zeros)
The initial statement is: QS = SU (1)
QR = TU (2)
We have to probe that: RS = ST
Take the expression (1): QS = SU
We multiply both sides by R (QS)R = (SU)R
But (QS)R = S(QR) Then: S(QR) = (SU)R (3)
From the expression (2): QR = TU. Then, substituting it in to expression (3):
S(TU) = (SU)R (4)
But S(TU) = (ST)U and (SU)R = (RS)U
Then, the expression (4) can be re-written as:
(ST)U = (RS)U
Eliminating U from both sides you have: (ST) = (RS) The proof is done.