According to O*NET, the common work contexts for Licensing Examiners and Inspectors include:
- Telephone
- Face-to-face discussions
- Contact with others
- Importance of being exact or accurate.
O*NET is an acronym for occupational information network and it refers to a free resource center or online database that is updated from time to time with several occupational definitions, so as to help the following categories of people understand the current work situation in the United States of America:
- Workforce development professionals
- Human resource (HR) managers
On O*NET, work contexts are typically used to describe the physical and social elements that are common to a particular profession or occupational work. Also, the less common work contexts are listed toward the bottom while common work contexts are listed toward the top.
According to O*NET, the common work contexts for Licensing Examiners and Inspectors include:
1. Telephone
2. Face-to-face discussions
3. Contact with others
4. Importance of being exact or accurate.
Read more on work contexts here: brainly.com/question/22826220
Answer:
a) A suspended floor is a ground floor with a void underneath the structure. The floor can be formed in various ways, using timber joists, precast concrete panels, block and beam system or cast in-situ with reinforced concrete. However, the floor structure is supported by external and internal walls.
b) Soil exploration consists of determining the profile of the natural soil deposits at the site, taking the soil samples and determining the engineering properties of soils using laboratory tests as well as in-situ testing methods
c) Bulking in sand Occurs When dry sand interacts with the atmospheric moisture. Presence of moisture content forms a thin layer around sand particles. This layer generates the force which makes particles to move aside to each other. This results in the increase of the volume of sand.
d) In a nutshell, bearing capacity is the capacity of soil to support the loads that are applied to the ground above. It depends primarily on the type of soil, its shear strength and its density. It also depends on the depth of embedment of the load – the deeper it is founded, the greater the bearing capacity.
Explanation:
<h2>please follow me</h2>
Answer:
radius = 9.1 ×
m
Explanation:
given data
applied load = 5560 N
flexural strength = 105 MPa
separation between the support = 45 mm
solution
we apply here minimum radius formula that is
radius =
.................1
here F is applied load and is length
put here value and we get
radius =
solve it we get
radius = 9.1 ×
m
1) 
2) 8.418
Explanation:
1)
The two components of the velocity field in x and y for the field in this problem are:


The x-component and y-component of the acceleration field can be found using the following equations:


The derivatives in this problem are:






Substituting, we find:

And

2)
In this part of the problem, we want to find the acceleration at the point
(x,y) = (-1,5)
So we have
x = -1
y = 5
First of all, we substitute these values of x and y into the expression for the components of the acceleration field:

And so we find:

And finally, we find the magnitude of the acceleration simply by applying Pythagorean's theorem:
