Answer:
0.008
Explanation:
From the question, the parameters given are:
Velocity V = 5 m/s
Pressure = 10 pa
But pressure = F/A
10 = F/A
F = 10A
Substitute all the parameters into the formula below
Coefficient of viscosity (η) = F × r /[AV]
Where
F = tangential force,
r = distance between layers,
A = Area, and
V = velocity
(η) = 10A × 0.004 /[A × 5]
The A will cancel out
(η) = 10 × 0.004 /[5]
(η) = 0.04 /5
(η) = 0.008
Therefore, the coefficient of viscosity of the fluid is 0.008
Answer:
Step 1 of 3
Case A:
AISI 1018 CD steel,
Fillet radius at wall=0.1 in,
Diameter of bar
From table deterministic ASTM minimum tensile and yield strengths for some hot rolled and cold drawn steels for 1018 CD steel
Tensile strength
Yield strength
The cross section at A experiences maximum bending moment at wall and constant torsion throughout the length. Due to reasonably high length to diameter ratio transverse shear will be very small compared to bending and torsion.
At the critical stress elements on the top and bottom surfaces transverse shear is zero
Explanation:
See the next steps in the attached image
Answer:
Explanation:
4140-40 I’d pick wood
I hope this helps! :)
..........23÷357=0.0644257703........
Answer:
0.2 kcal/mol is the value of for this reaction.
Explanation:
The formula used for is:
where,
= Gibbs free energy for the reaction
= standard Gibbs free energy
R =Universal gas constant
T = temperature
Q = reaction quotient
k = Equilibrium constant
We have :
Reaction quotient of the reaction = Q = 46
Equilibrium constant of reaction = K = 35
Temperature of reaction = T = 25°C = 25 + 273 K = 298 K
R = 1.987 cal/K mol
1 cal = 0.001 kcal
0.2 kcal/mol is the value of for this reaction.