1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erica [24]
3 years ago
13

An air compressor of mass 120 kg is mounted on an elastic foundation. It has been observed that, when a harmonic force of amplit

ude 120 N is applied to the compressor, the maximum steady-state displacement of 5 mm occurred at a frequency of 320 r/min. Determine the equivalent stiffness and damping constant of the foundation.
Engineering
1 answer:
kupik [55]3 years ago
7 0

Answer:

equivalent stiffness is 136906.78 N/m

damping constant is 718.96 N.s/m

Explanation:

given data

mass = 120 kg

amplitude = 120 N

frequency = 320 r/min

displacement = 5 mm

to find out

equivalent stiffness and damping

solution

we will apply here frequency formula that is

frequency ω = ω(n) √(1-∈ ²)      ......................1

here  ω(n) is natural frequency i.e = √(k/m)

so from equation 1

320×2π/60 = √(k/120) × √(1-2∈²)

k × ( 1 - 2∈²) = 33.51² ×120

k × ( 1 - 2∈²) = 134752.99    .....................2

and here amplitude ( max ) of displacement is express as

displacement = force / k  ×  (  \frac{1}{2\varepsilon \sqrt{1-\varepsilon ^2}})

put here value

0.005 = 120/k   ×  (  \frac{1}{2\varepsilon \sqrt{1-\varepsilon ^2}})  

k ×∈ × √(1-2∈²) = 1200       ......................3

so by equation 3 and 2

\frac{k\varepsilon \sqrt{1-\varepsilon^2})}{k(1-2\varepsilon^2)} = \frac{12000}{134752.99}

\varepsilon^{2} - \varepsilon^{4}  = 7.929 * 10^{-3} - 0.01585 * \varepsilon^{2}

solve it and we get

∈ = 1.00396

and

∈ = 0.08869

here small value we will consider so

by equation 2 we get

k × ( 1 - 2(0.08869)²) = 134752.99

k  = 136906.78 N/m

so equivalent stiffness is 136906.78 N/m

and

damping is express as

damping = 2∈ √(mk)

put here all value

damping = 2(0.08869) √(120×136906.78)

so damping constant is 718.96 N.s/m

You might be interested in
When framing a building, a simple way to estimate the total amount of wall studs needed is to allow
Levart [38]
1+1=2
Solution
3:932(2)=61
4 0
3 years ago
How many power station do we have​
loris [4]

Answer: 9,719

Explanation:

5 0
3 years ago
The steady-state data listed below are claimed for a power cycle operating between hot and cold reservoirs at 1200K and 400K, re
Anni [7]

Answer:

a) W_cycle = 200 KW , n_th = 33.33 %  , Irreversible

b) W_cycle = 600 KW , n_th = 100 %     , Impossible

c) W_cycle = 400 KW , n_th = 66.67 %  , Reversible

Explanation:

Given:

- The temperatures for hot and cold reservoirs are as follows:

  TL = 400 K

  TH = 1200 K

Find:

For each case W_cycle , n_th ( Thermal Efficiency ) :

(a) QH = 600 kW, QC = 400 kW

(b) QH = 600 kW, QC = 0 kW

(c) QH = 600 kW, QC = 200kW

- Determine whether the cycle operates reversibly, operates irreversibly, or is impossible.

Solution:

- The work done by the cycle is given by first law of thermodynamics:

                                 W_cycle = QH - QC

- For categorization of cycle is given by second law of thermodynamics which states that:

                                 n_th < n_max     ...... irreversible

                                 n_th = n_max     ...... reversible

                                 n_th > n_max     ...... impossible

- Where n_max is the maximum efficiency that could be achieved by a cycle with Hot and cold reservoirs as follows:

                                n_max = 1 - TL / TH = 1 - 400/1200 = 66.67 %

And,                         n_th = W_cycle / QH

a) QH = 600 kW, QC = 400 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 400 = 200 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 200 / 600 = 33.33 %

   - The type of process according to second Law of thermodynamics:

               n_th = 33.333 %                n_max = 66.67 %

                                       n_th < n_max  

      Hence,                Irreversible Process  

b) QH = 600 kW, QC = 0 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 0 = 600 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 600 / 600 = 100 %

   - The type of process according to second Law of thermodynamics:

                 n_th = 100 %                 n_max = 66.67 %

                                     n_th > n_max  

      Hence,               Impossible Process              

c) QH = 600 kW, QC = 200 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 200 = 400 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 400 / 600 = 66.67 %

   - The type of process according to second Law of thermodynamics:

               n_th = 66.67 %                 n_max = 66.67 %

                                     n_th = n_max  

      Hence,                Reversible Process

7 0
3 years ago
50POINTS
maxonik [38]

Answer:

Ensure that all material and energy inputs and outputs are as inherently safe and benign as possible. Minimize the depletion of natural resources. Prevent waste. Develop and apply engineering solutions while being cognizant of local geography, aspirations, and cultures.Green engineering is the design, commercialization, and use of processes and products that minimize pollution, promote sustainability, and protect human health without sacrificing economic viability and efficiency.The goal of environmental engineering is to ensure that societal development and the use of water, land and air resources are sustainable. This goal is achieved by managing these resources so that environmental pollution and degradation is minimized.

Explanation:i helped

7 0
3 years ago
Read 2 more answers
Multiple Choice
Charra [1.4K]

Answer:

I guess A number is right

7 0
2 years ago
Other questions:
  • An 80-L vessel contains 4 kg of refrigerant-134a at a pressure of 160kPa. Determine (a) the temperature, (b) the quality, (c) th
    11·1 answer
  • List irreversibilities
    11·1 answer
  • Is it acceptable to mix used absorbents.
    8·2 answers
  • Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part
    9·1 answer
  • Read a 4 character number. Output the result in in the following format, Input 9873, Output 3 *** 7 ******* 8 ******** 9 *******
    8·1 answer
  • Multilane roads use what to divide lanes of traffic moving in the same direction.
    14·2 answers
  • Welding and cutting done in confined spaces must
    5·2 answers
  • Is it permissible to install recessed fixture directly against wood ceiling joists? Explain why or why not.
    5·1 answer
  • Describe the meaning of the different symbols and abbreviations found on the documents that they use
    11·1 answer
  • Select the correct answer. Which of the following devices is a simple machine? A.
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!