1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erica [24]
3 years ago
13

An air compressor of mass 120 kg is mounted on an elastic foundation. It has been observed that, when a harmonic force of amplit

ude 120 N is applied to the compressor, the maximum steady-state displacement of 5 mm occurred at a frequency of 320 r/min. Determine the equivalent stiffness and damping constant of the foundation.
Engineering
1 answer:
kupik [55]3 years ago
7 0

Answer:

equivalent stiffness is 136906.78 N/m

damping constant is 718.96 N.s/m

Explanation:

given data

mass = 120 kg

amplitude = 120 N

frequency = 320 r/min

displacement = 5 mm

to find out

equivalent stiffness and damping

solution

we will apply here frequency formula that is

frequency ω = ω(n) √(1-∈ ²)      ......................1

here  ω(n) is natural frequency i.e = √(k/m)

so from equation 1

320×2π/60 = √(k/120) × √(1-2∈²)

k × ( 1 - 2∈²) = 33.51² ×120

k × ( 1 - 2∈²) = 134752.99    .....................2

and here amplitude ( max ) of displacement is express as

displacement = force / k  ×  (  \frac{1}{2\varepsilon \sqrt{1-\varepsilon ^2}})

put here value

0.005 = 120/k   ×  (  \frac{1}{2\varepsilon \sqrt{1-\varepsilon ^2}})  

k ×∈ × √(1-2∈²) = 1200       ......................3

so by equation 3 and 2

\frac{k\varepsilon \sqrt{1-\varepsilon^2})}{k(1-2\varepsilon^2)} = \frac{12000}{134752.99}

\varepsilon^{2} - \varepsilon^{4}  = 7.929 * 10^{-3} - 0.01585 * \varepsilon^{2}

solve it and we get

∈ = 1.00396

and

∈ = 0.08869

here small value we will consider so

by equation 2 we get

k × ( 1 - 2(0.08869)²) = 134752.99

k  = 136906.78 N/m

so equivalent stiffness is 136906.78 N/m

and

damping is express as

damping = 2∈ √(mk)

put here all value

damping = 2(0.08869) √(120×136906.78)

so damping constant is 718.96 N.s/m

You might be interested in
A bridge to be fabricated of steel girders is designed to be 500 m long and 12 m wide at ambient temperature (assumed 20°C). Exp
Volgvan

Answer:

a) 22.5number

b) 22.22 m length

Explanation:

Given data:

Bridge length = 500 m

width of bridge = 12 m

Maximum temperature = 40 degree C

minimum temperature  = - 35 degree C

Maximum expansion can be determined as

\Delta L = L \alpha (T_{max} - T_{min})

where , \alpha is expansion coefficient = 12\times 10^{-6} degree C

SO, \Delta L = 500\times 12\times 10^{-6}\times ( 40 - (-35))

\Delta L = 0.45 m = 450 mm

number of minimum expansion joints is calculated as

n = \frac{450}{20} = 22.5

b) length of each bridge

Length = \frac{500}{22.5} = 22.22 m

8 0
3 years ago
Current density is given in cylindrical coordinates as J = −106z1.5az A/m2 in the region 0 ≤ rho ≤ 20 µm; for rho ≥ 20 µm, J = 0
Naily [24]

Question:

Current density is given in cylindrical coordinates as J = −10^6z^1.5az A/m² in the region 0 ≤ ρ ≤ 20 µm; for ρ ≥ 20 µm, J = 0.

(a) Find the total current crossing the surface z = 0.1 m in the az direction.

(b) If the charge velocity is 2 × 10^6 m/s at z = 0.1 m, find ρν there.

(c) If the volume charge density at z = 0.15 m is −2000 C/m3, find the charge velocity there.

Answer:

a. -39.8μA

b. -15.81mC/m³

c. 29.05m/s

Explanation:

Given

Density = J = −10^6z^1.5az A/m²

Region: 0 ≤ ρ ≤ 20 µm

ρ ≥ 20 µm

J = 0.

a. Total current is calculated by.

J * ½((ρ1)² - (ρ0)²) * 2 π * φdza.

Where J = Density = -10^6 * z^1.5

ρ1 = Upper bound of ρ = 20

ρ0 = Lower bound of ρ = 0

π = 22/7

φdza = 10^-6

z = 0.1

Total current

= -10^6 * z^1.5 * ½(20² - 0²) * 2 * 22/7 * 10^-6

= 10^6 * 0.1^1.5 * ½(20² - 0²) * 2 * 22/7 * 10^-6

= −39.7543477278310

= -39.8μA

b. Calculating velocity charge density at (ρv)

Density (J) = ρv * V

Where J = Density = -10^6 * z^1.5

V = 2 * 10^6

z = 0.1

Substitute the above values

-10^6 * 0.1 ^1.5 = ρv * 2 * 10^6

ρv = (-10^6 * 0.1^1.5)/(2 * 10^6)

ρv = -0.1^1.5/(2)

ρv = -0.015811388300841

ρv = -0.01581 --------- Approximated

ρv = -15.81mC/m³

c. Calculating Velocity

Velocity = J/V

Where Velocity Charge Density = -2000 C/m3

Where J = -10^6 * z^1.5

z = 0.15

J = -10^6 * 0.15^1.5

J = -58094.75019311125

Velocity = -58094.75019311125/-2000

Velocity = 29.047375096555625m/s

Velocity = 29.05m/s

8 0
3 years ago
A battery is an electromechanical device. a)- True b)- False
lilavasa [31]

Answer:

b)False

Explanation:

A battery is a device which store the energy in the form of chemical energy.And this stored energy is used according to the requirement.So battery is not a electromechanical device.Because it does have any mechanical component like gear ,shaft flywheel etc.

A flywheel is known as mechanical battery because it stored mechanical energy and supply that energy when more energy is required.Generally fly wheel is used during punching operation.

5 0
3 years ago
A hot brass plate is having its upper surface cooled by impinging jet of air at temperature of 15°C and convection heat transfer
gulaghasi [49]

Answer:

809.98°C

Explanation:

STEP ONE: The first step to take in order to solve this particular Question or problem is to find or determine the Biot value.

Biot value = (heat transfer coefficient × length) ÷ thermal conductivity.

Biot value = (220 × 0.1)÷ 110 = 0.2.

Biot value = 0.2.

STEP TWO: Determine the Fourier number. Since the Biot value is greater than 0.1. Tis can be done by making use of the formula below;

Fourier number = thermal diffusivity × time ÷ (length)^2.

Fourier number = (3 × 60 × 33.9 × 10^-6)/( 0.1)^2 = 0.6102.

STEP THREE: This is the last step for the question, here we will be calculating the temperature of the center plane of the brass plate after 3 minutes.

Thus, the temperature of the center plane of the brass plane after 3 minutes = (1.00705) (0.89199) (900- 15) + 15.

= > the temperature of the center plane of the brass plane after 3 minutes = 809.98°C.

5 0
3 years ago
There are four spheres of earth. These include __________, _________, ________ and _________. They are important because when th
ololo11 [35]

Answer:

"lithosphere" , "hydrosphere" , "biosphere" , "atmosphere"

4 0
3 years ago
Other questions:
  • In normal operation, a paper mill generates excess steam at 20 bar and 400◦C. It is planned to use this steam as the feed to a t
    14·1 answer
  • Ear "popping" is an unpleasant phenomenon sometimes experienced when a change in pressure occurs, for example in a
    12·1 answer
  • A waste treatment pond is 50m long and 25m wide, and has an average depth of 2m.The density of the waste is 75.3 lbm/ft3. Calcul
    12·1 answer
  • A 3-phase induction motor is being driven at a frequency of 80 Hz, and the motor speed is 1000 rpm. How many poles does the moto
    8·1 answer
  • The temperature of a gas stream is to be measured by a thermocouple whose junction can be approximated as a 1.2-mm-diameter sphe
    7·1 answer
  • What is a core self-evaluation, include identifying and explaining the components of core self-evaluation. And, how a group lead
    8·2 answers
  • 19. A circuit contains four 100 S2 resistors connected in series. If you test the circuit with a digital VOM,
    9·1 answer
  • Using the tables for water, determine the specified property data at the indicated states. In each case, locate the state on ske
    10·1 answer
  • Explain wet and dry compression tests​
    6·1 answer
  • If 200 amperes flow from the positive terminal of a battery and operate the starter motor, how many amperes will flow back to th
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!