1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liq [111]
3 years ago
8

In a flow over a flat plate, the Stanton number is 0.005: What is the approximate friction factor for this flow a)- 0.01 b)- 0.0

2 c)- 0.001 d)- 0.1
Engineering
1 answer:
elena-14-01-66 [18.8K]3 years ago
5 0

Answer:

(a) .01

Explanation:

  • stanton number is a dimensionless quantity
  • stanton is expressed as \frac{heat transer}{thermal capacity}
  • stanton number is discovered by Thomas edward stanton

there is relation between friction factor and stanton number and friction factor that is stanton number is half of friction factor

stanton number =\frac{friction factor}{2}

.005=\frac{friction factor}{2}

friction factor =2×.005

friction factor=.01

You might be interested in
Select the correct answer.
boyakko [2]
I think the answer is b
6 0
3 years ago
Read 2 more answers
As a general rule of thumb, in-line engines are easier to work on than the other cylinder arrangements.
siniylev [52]

Answer:

The general rule of thumb is that the SMALLER a substance's atoms and the STRONGER the bonds, the harder the substance. Two of the strongest forms of chemical bonds are the ionic and covalent bonds.

Explanation:

5 0
2 years ago
What do you think of this schematic diagram?​
Sholpan [36]

Explanation:

A schematic diagram is a picture that represents the components of a process, device, or other object using abstract, often standardized symbols and lines. ... Schematic diagrams do not include details that are not necessary for comprehending the information that the diagram was intended to convey.

5 0
2 years ago
A beam has a rectangular cross section that is 5 inches wide and 1.5 inches tall. The supports are 60 inches apart and with a 12
nydimaria [60]

Answer:

The value of Modulus of elasticity E = 85.33 × 10^{6} \frac{lbm}{in^{2} }

Beam deflection is = 0.15 in

Explanation:

Given data

width = 5 in

Length = 60 in

Mass of the person = 125 lb

Load = 125 × 32 = 4000\frac{ft lbm}{s^{2} }

We know that moment of inertia is given as

I = \frac{bt^{3} }{12}

I = \frac{5 (1.5^{3} )}{12}

I = 1.40625 in^{4}

Deflection = 0.15 in

We know that deflection of the beam in this case is given as

Δ = \frac{PL^{3} }{48EI}

0.15 = \frac{4000(60)^{3} }{48 E (1.40625)}

E = 85.33 × 10^{6} \frac{lbm}{in^{2} }

This is the value of Modulus of elasticity.

Beam deflection is = 0.15 in

6 0
2 years ago
A thin rim with a mean diameter of 1.2 m cross-section of 15 mm x 200 mm is subjected to an internal pressure of 10 MPa and rota
Soloha48 [4]

Answer:

The net centrifugal force over the rim is 30000N, the radial stress is 397887 Pa and the total change in diameter is 4.98 mm.

Explanation:

Lets first calculate the force in the rim due to the centrifugal force. For doing this we may assume that the centrifugal force is constant along with thick because of the thin thick.

Fc = m.ω^2/R

Where m is the mass, w the angular speed and R the mean radius.  The mass is computing by the rim density and its volume:

m=p.V

m=p*(A*R)

Where A is the cross-sectional area in meters:

m=((0.015m*0.200m)*0.6m)*(7800 kg/m^3)=28.08 kg

The angular speed in rad/s is:

ω = 800r/m . 1m/60s = 133.33 r/s

Thus the centrifugal force is:

Fc = (28.08 kg)*(133.33 rad/s)^2*(0.6m) = 299505N = 30000N

Note that the calculating value is the net contribution to the whole rim but the centrifugal force is distributed along the rim's external area:

fc = Fc / (2π .R .b)

Where b is rim's with equal to 200mm :

fc = 300000 N / (2π*0.6m*0.2m) = 397887 N/m^2

The centrifugal force can be taken as internal pressure:

Pfc = 397887 N/m^2 = 3978787 Pa

As both pressures act expanding the rim it can be summed:

Pt=Pi+Pfc

Pt = 10MPa+397887Pa= 10000000Pa+397887Pa= 10397887Pa

Then for a thinner thick the stress is calculated by:

Pt*d =2σr*t

Take into account that the stress σr is over the radial direction. Then solving for o and by replacing the total pressure:

σr = Pt.d/(2*t)

σr = 10397887 Pa / (2*0.015m*0.2m) = 415915480Pa = 415MPa

We know that the radial specific deformation ε is:

σr = E / εr

εr = σr / E

For a young modulus of 200GPa:

εr = 415MPa / 200GPa

εr = 415MPa / 200000MPa=0.002075

By definition the specific deformation is written in terms of the total change in the radius:

εr = Δr / R

Δr = R / εr =0.002075 * 1.2 m = 0.00249m

As we need the change in diameter:

Δd = 2Δr =0.00498m= 4.98mm [/tex]

5 0
3 years ago
Other questions:
  • Calculate the load, PP, that would cause AA to be displaced 0.01 inches to the right. The wires ABAB and ACAC are A36 steel and
    10·1 answer
  • I don't understand this I am really bad at measurements
    12·2 answers
  • Is it more difficult to pump oil from a well on dry land or a well under water?Why?
    11·1 answer
  • Part of the basic procedures is the vehicle check. What does that mean?
    7·1 answer
  • 5 lb of propane is contained in a closed, rigid tank initially at 80 lbf/in^2, 110 degrees Fahrenheit. Heat transfer occurs unti
    5·1 answer
  • I need solution for this question ​
    10·1 answer
  • A customer complains that the heater works sometimes, but sometimes only cold air comes out while driving. Technician A says tha
    14·1 answer
  • A landowner and a contractor entered into a written contract under which the contractor agreed to build a building and pave an a
    14·1 answer
  • The Aluminum Electrical Conductor Handbook lists a dc resistance of 0.01558 ohm per 1000 ft at 208C and a 60-Hz resistance of 0.
    11·1 answer
  • What are the maximum weights for single, tandem and 5-axle combinations?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!