1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fofino [41]
3 years ago
8

A cylindrical tank is required to contain a gage pressure 560 kPa . The tank is to be made of A516 grade 60 steel with a maximum

allowable normal stress of 150 MPa . If the inner diameter of the tank is 3 m , what is the minimum thickness, t, of the wall
Engineering
1 answer:
adoni [48]3 years ago
8 0

Answer:

5.6 mm

Explanation:

Given that:

A cylindrical tank is required to contain a:

Gage Pressure P = 560 kPa

Allowable normal stress \sigma = 150 MPa = 150000 Kpa.

The inner diameter of the tank = 3 m

In a closed cylinder  there exist both the circumferential stress and the longitudinal stress.

Circumferential stress \sigma = \dfrac{pd}{2t}

Making thickness t the subject; we have

t = \dfrac{pd}{2* \sigma}

t = \dfrac{560000*3}{2*150000000}

t = 0.0056 m

t = 5.6 mm

For longitudinal stress.

\sigma = \dfrac{pd}{4t}

t= \dfrac{pd}{4*\sigma }

t = \dfrac{560000*3}{4*150000000}

t = 0.0028  mm

t = 2.8 mm

From the above circumferential stress and longitudinal stress; the stress with the higher value will be considered ; which is circumferential stress and it's minimum value  with the maximum thickness = 5.6 mm

You might be interested in
What is rainfall intensity
bearhunter [10]

Answer:

Rainfall intensity is defined as the ratio of the total amount of rain (rainfall depth) falling during a given period to the duration of the period It is expressed in depth units per unit time, usually as mm per hour (mm/h).

3 0
2 years ago
Read 2 more answers
Thermal energy storage systems commonly involve a packed bed of solid spheres, through which a hot gas flows if the system is be
hammer [34]

Answer:

A) i) 984.32 sec

ii) 272.497° C

B) It has an advantage

C) attached below

Explanation:

Given data :

P = 2700 Kg/m^3

c = 950 J/kg*k

k = 240 W/m*K

Temp at which gas enters the storage unit  = 300° C

Ti ( initial temp of sphere ) = 25°C

convection heat transfer coefficient ( h ) = 75 W/m^2*k

<u>A) Determine how long it takes a sphere near the inlet of the system to accumulate 90% of the maximum possible energy and the corresponding temperature at the center of sphere</u>

First step determine the Biot Number

characteristic length( Lc ) = ro / 3 = 0.0375 / 3 = 0.0125

Biot number ( Bi ) = hLc / k = (75)*(0.0125) / 40 = 3.906*10^-3

Given that the value of the Biot number is less than 0.01 we will apply the lumped capacitance method

attached below is a detailed solution of the given problem

<u>B) The physical properties are copper</u>

Pcu = 8900kg/m^3)

Cp.cu = 380 J/kg.k

It has an advantage over Aluminum

C<u>) Determine how long it takes a sphere near the inlet of the system to accumulate 90% of the maximum possible energy and the corresponding temperature at the center of sphere</u>

Given that:

P = 2200 Kg/m^3

c = 840 J/kg*k

k = 1.4 W/m*K

3 0
3 years ago
Which of the following expression yields an integer between 0 and 100, inclusive?
enot [183]

Answer:

B. (int)(Math.random() * 101)

Explanation:

The function designed as Math.random act as a floating-point of a pseudorandom number with the range between [0,1] which simply means that starting from 0 (inclusive) up to but with the exception of  1 (exclusive), which the design can now be scale to the preferred desired range.

Suppose, we needed 100 inclusive, we have 101 exclusive since we need to scale to 101.

5 0
3 years ago
A single crystal of zinc is oriented for a tensile test such that its slip plane normal makes an angle of 65 degree with the ten
Crank

Answer:

a. 30°

b. 0.9MPa

Explanation:

The slip will occur along that direction for which the Schmid factor is maximum. The three possible slip directions are mentioned as 30°, 48°, 78°

The cosines for the possible λ values are given as

For 30°, cos 30 = 0.867

For 48°, cos 48 = 0.67

For 78°, cos 78 = 0.21

Among the three-calculated cosine values, the largest cos(λ) gives the favored slip direction

The maximum value of Schmid factor is 0.87. Thus, the most favored slip direction is 30° with the tensile axis.

The plastic deformation begins at a tensile stress of 2.5MPa. Also, the value of the angle between the slip plane normal and the tensile axis is mentioned as 65°

Thus, calculate the value of critical resolved shear stress for zinc:

From the expression for Schmid’s law:

τ = σ*cos(Φ)*cos(λ)

Substituting 2.5MPa for σ, 30° for λ and 65° for Φ

We obtain The critical resolved shear stress for zinc, τ = 0.9 MPa

4 0
3 years ago
Consider a 1.5-m-high and 2.4-m-wide glass window whose thickness is 6 mm and thermal conductivity is k = 0.78 W/m⋅K. Determine
Bess [88]

Answer:

The steady rate of heat transfer through the glass window is 707.317 watts.

Explanation:

A figure describing the problem is included below as attachment. From First Law of Thermodynamics we get that steady rate of heat transfer through the glass window is the sum of thermal conductive and convective heat rates, all measured in watts:

\dot Q_{total} = \dot Q_{cond} + \dot Q_{conv, in} + \dot Q_{conv, out} (Eq. 1)

Given that window is represented as a flat element, we can expand (Eq. 1) as follows:

\dot Q_{total} = \frac{T_{i}-T_{o}}{R} (Eq. 2)

Where:

T_{i}, T_{o} - Indoor and outdoor temperatures, measured in Celsius.

R - Overall thermal resistance, measured in Celsius per watt.

Now, we know that glass window is configurated in series and overall thermal resistance is:

R = R_{cond} + R_{conv, in}+R_{conv, out} (Eq. 3)

Where:

R_{cond} - Conductive thermal resistance, measured in Celsius per watt.

R_{conv, in}, R_{conv, out} - Indoor and outdoor convective thermal resistances, measured in Celsius per watt.

And we expand the expression as follows:

R = \frac{l}{k\cdot w\cdot d} + \frac{1}{h_{i}\cdot w\cdot d} + \frac{1}{h_{i}\cdot w\cdot d}

R = \frac{1}{w\cdot d}\cdot \left(\frac{l}{k}+\frac{1}{h_{i}}+\frac{1}{h_{o}}   \right) (Eq. 4)

Where:

w - Width of the glass window, measured in meters.

d - Length of the glass window, measured in meters.

l - Thickness of the glass window, measured in meters.

k - Thermal conductivity, measured in watts per meter-Celsius.

h_{i}, h_{o} - Indoor and outdoor convection coefficients, measured in watts per square meter-Celsius.

If we know that w = 2.4\,m, d = 1.5\,m, l = 0.006\,m, k = 0.78\,\frac{W}{m\cdot ^{\circ}C}, h_{i} = 10\,\frac{W}{m^{2}\cdot ^{\circ}C} and h_{o} = 25\,\frac{W}{m^{2}\cdot ^{\circ}C}, the overall thermal resistance is:

R = \left[\frac{1}{(2.4\,m)\cdot (1.5\,m)}\right] \cdot \left(\frac{0.006\,m}{0.78\,\frac{W}{m\cdot ^{\circ}C} }+\frac{1}{10\,\frac{W}{m^{2}\cdot ^{\circ}C} }+\frac{1}{25\,\frac{W}{m^{2}\cdot ^{\circ}C} }  \right)

R = 0.041\,\frac{^{\circ}C}{W}

Now, we obtain the steady rate of heat transfer from (Eq. 2): (R = 0.041\,\frac{^{\circ}C}{W}, T_{i} = -5\,^{\circ}C, T_{o} = 24\,^{\circ}C)

\dot Q_{total} = \frac{24\,^{\circ}C-(-5\,^{\circ}C)}{0.041\,\frac{^{\circ}C}{W} }

\dot Q_{total} = 707.317\,W

The steady rate of heat transfer through the glass window is 707.317 watts.

6 0
3 years ago
Other questions:
  • A Coca Cola can with diameter 62 mm and wall thickness 300 um has an internal pressure of 100 kPa. Calculate the principal stres
    9·1 answer
  • How are the accelerator and brake pedal positioned in relation to each other? A. The brake pedal is to the right of the accelera
    5·1 answer
  • How would your priorities change if the fine on the library book was $10 a day?
    14·1 answer
  • Consider a metal single crystal oriented such that the normal to the slip plane and the slip direction are at angles of 43.1 deg
    6·1 answer
  • Timken rates its bearings for 3000 hours at 500 rev/min. Determine the catalog rating for a ball bearing running for 10000 hours
    7·1 answer
  • Which one is dependent variable?
    13·1 answer
  • 2. What is the original length of the rectangular bar if the deformation is 0.005 in with a force of 1000 lbs and an area of 0.7
    9·1 answer
  • As an employee, who is supposed to provide training on the chemicals you are handling or come in contact with at work?
    5·2 answers
  • Which of the following is typically wom when working in an atmosphere containing dust?
    10·1 answer
  • I feel so pressured..
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!