For a reaction to occur, energy must be absorbed to break chemical bonds
<u>Explanation:</u>
Reactions can be classified as chemical reaction, nuclear reaction, thermal reaction. So in these three reaction types, the nature of energy will only be varying.
But in order to execute a reaction, there should be breaking of existing bonds and then formation of new bonds. So for breaking of the bonds of reactants, energy should be absorbed from the surrounding.
Then the extra energy will be released after forming the products. Thus, the process of absorption of energy will lead to endothermic process and the process of releasing of energy will lead to exothermic reaction. So for a reaction to occur, energy must be absorbed to break the chemical bonds.
Answer:
The right solution is "165.8 nm".
Explanation:
Given:
Index of refraction,
n = 1.81
Wavelength,
λ = 600 nm
We know that,
⇒ 
By putting the values, we get


Answer:
No. of moles, n = 25.022 moles
Given:
Volume of gas in tank, V = 29.1 l
Temperate of gas, T =
= 273 + 35.8 = 308.8 K
Pressure of gas, P = 21.8 atm
Solution:
Making use of the ideal gas equation which given as:
PV = nRT
where
R = Rydberg's constant = 0.0821 L-atm/mol-K
Re-arranging the above formula for 'n' and putting the values in the above formula:

n = 25.022