What is the SI (metric) unit of FORCE?
with symbol ( N )
All the best !
Answer:
Part a)

Part b)

Since the distance of other building is 15 m so YES it can make it to other building
Part c)

direction of velocity is given as
![[tex]\theta = 26.35 degree](https://tex.z-dn.net/?f=%5Btex%5D%5Ctheta%20%3D%2026.35%20degree)
Explanation:
Part a)
acceleration due to gravity on this planet is 3/4 times the gravity on earth
So the acceleration due to gravity on this new planet is given as


now the vertical displacement covered by the canister is given as

now by kinematics we have



Part b)
Horizontal speed of the canister is given as

now the distance moved by it



Since the distance of other building is 15 m so YES it can make it to other building
Part c)
Final velocity in X direction will remains the same

final velocity in Y direction



now magnitude of velocity is given as



direction of velocity is given as


![[tex]\theta = 26.35 degree](https://tex.z-dn.net/?f=%5Btex%5D%5Ctheta%20%3D%2026.35%20degree)
Answer:
option ( a ) is correct .
Explanation:
Escape velocity on the earth = √ ( 2 GM / R )
where G is universal gravitational constant , M is mass of the earth and R is radius .
V₀ = √ ( 2 GM / R )
escape velocity on the planet where mass is equal is earth's mass and radius is 4 times that of the earth
Radius of the planet = 4 R
escape velocity of planet = √ ( 2 GM / 4R )
= .5 x √ ( 2 GM / R )
= .5 V₀
option ( a ) is correct .
Complete question:
Point charges q1=- 4.10nC and q2=+ 4.10nC are separated by a distance of 3.60mm , forming an electric dipole. The charges are in a uniform electric field whose direction makes an angle 36.8 ∘ with the line connecting the charges. What is the magnitude of this field if the torque exerted on the dipole has magnitude 7.30×10−9 N⋅m ? Express your answer in newtons per coulomb to three significant figures.
Answer:
The magnitude of this field is 826 N/C
Explanation:
Given;
The torque exerted on the dipole, T = 7.3 x 10⁻⁹ N.m
PEsinθ = T
where;
E is the magnitude of the electric field
P is the dipole moment
First, we determine the magnitude dipole moment;
Magnitude of dipole moment = q*r
P = 4.1 x 10⁻⁹ x 3.6 x 10⁻³ = 1.476 x 10⁻¹¹ C.m
Finally, we determine the magnitude of this field;

E = 826 N/C (in three significant figures)
Therefore, the magnitude of this field is 826 N/C
Work = (force) x (distance) =
(200 N) x (3.5 m) = <em>700 joules</em>