Explanation:
It is given that,
A mass oscillates up and down on a vertical spring with an amplitude of 3 cm and a period of 2 s. It is a case of simple harmonic motion. If the amplitude of a wave is T seconds, then the distance cover by that object is 4 times the amplitude.
In 2 seconds, distance covered by the mass is 12 cm.
In 1 seconds, distance covered by the mass is 6 cm
So, in 16 seconds, distance covered by the mass is 96 cm
So, the distance covered by the mass in 16 seconds is 96 cm. Hence, this is the required solution.
Answer:
The angular velocity is 15.37 rad/s
Solution:
As per the question:

Horizontal distance, x = 30.1 m
Distance of the ball from the rotation axis is its radius, R = 1.15 m
Now,
To calculate the angular velocity:
Linear velocity, v = 
v = 
v = 
v = 
Now,
The angular velocity can be calculated as:

Thus

Age of dino: Mesozoic era
End of earth a dessert: End of the Mesozoic
a layer: Paleozoic
Answer:
B) 1/5 ba^2 T^5
Explanation:
The dissipated energy is given by the work done over the object by the force F=-bv. The work is given by the following formula:

you derivative the function f(x) and replace v by the derivative dx/dt you obtain:

hence, the dissipated energy is 1/5 ba^2 T^5