Answer: 5.5km
Explanation:
Atmospheric pressure will be 500 mb (that is half of the total 1000mb air pressure).
Pressure decreases with increasing altitude. This is because at At higher altitudes, there are fewer air molecules above a the known or given surface than a similar surface at lower levels.
Pressure decreasing with higher altitudes also means that air pressure decreases rapidly at lowerevels but more slowly at higher levels.
It is also known that more than half of the atmospheric molecules are located below 5.5 km(that is atmospheric pressure decreases within the lowest 5.5 km to about fifty(50) percent( that is 500 millibar).
<span>In order for the results to be valid, the dependent variable can only be affected by the independent variable, so somethings need to be kept constant. The things that need to be kept constant are called controlled variables.</span>
Answer:
Explanation:
Given that
g=9.8m/s²
The spring constant is
k=50N/m
The length of the bungee cord is
Lo=32m
Height of bridge which one end of the bungee is tied is 91m
A steel ball of mass 92kg is attached to the other end of the bungee.
The potential energy(Us) of the steel ball before dropped from the bridge is given as
P.E= mgh
P.E= 92×9.8×91
P.E= 82045.6 J
Us= 82045.6 J
Potential energy)(Uc) of the cord is given as
Uc= ½ke²
Where 'e' is the extension
Then the extension is final height extended by cord minus height of cord
e=hf - hi
e=hf - 32
Uc= ½×50×(hf-32)²
Uc=25(hf-32)²
Using conservation of energy,
Then,
The potential energy of free fall equals the potential energy in string
Uc=Us
25(hf-32)²=82045.6
(hf-32)² = 82045.6/25
(hf-32)²=3281.825
Take square root of both sides
√(hf-32)²=√(3281.825)
hf-32=57.29
hf=57.29+32
hf=89.29m
We neglect the negative sign of the root because the string cannot compressed
Answer:
Based off the word "conserved" I would say
A. Conservation of Momentum.
Explanation:
It can be transmit in hydraulic machine, exerting a small cross-sectional area can lead to pressure being transmitted