1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
konstantin123 [22]
3 years ago
9

If a car stopped then accelerates at 25m/s2 for 2 seconds what is the final velocity of the car?

Physics
1 answer:
nalin [4]3 years ago
5 0
The velcocity equals acceleration times time
which is 50 ms per sec
You might be interested in
A 2.20-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 29.0 N is require
g100num [7]

Answer:

a. 145 N/m b. 1.29 Hz c. 1.62 m/s d.  0 m e. 13.2 m/s² f. ± 0.2 m g. 2.9 J h. 0.54 m/s i. 4.39 m/s²

Explanation:

a. The force constant of the spring

The spring force F = kx and k = F/x where k is the spring constant. F = 29.0 N and x = 0.200 m

k = 29.0 N/0.200 m = 145 N/m

b. The frequency of oscillations, f

f = 1/2π√(k/m)    m = mass = 2.20 kg

f = 1/2π√(145 N/m/2.20 kg) = 1.29 Hz

c. maximum speed of the object

The maximum elastic potential energy of the spring = maximum kinetic  energy of the object

1/2kx² = 1/2mv²

v = (√k/m)x where v is the maximum speed of the object

v = (√145/2.2)0.2 = 1.62 m/s

d Where does the maximum speed occur?

The maximum speed occurs at  0 m

e. The maximum acceleration

a = kx/m = 145 × 0.2/2.2 = 13.2 m/s²

f. The maximum acceleration occurs at x = ± 0.2 m

g. The total energy of the system is the maximum elestic potential energy of the system

E = 1/2kx² = 1/2 × 145 × 0.2² = 2.9 J

h. When x = x₀/3

1/2k(x₀/3)² = 1/2mv²

kx₀²/9 = mv²

v = 1/3(√k/m)x₀ = 1/3(√145/2.2)0.2 = 0.54 m/s

i When x = x₀/3

a = kx₀/3m =  145 × 0.2/(2.2 × 3)= 4.39 m/s²

8 0
3 years ago
Given that on Earth, gravity causes an acceleration of 9.8 m/s2, what is an acceleration of 7 g?
zzz [600]

Answer:

68.6 m/s^2

Explanation:

1 g = 9.8 m/s^2

so

7 g × 9.8m/s^2 = 68.6

7 0
2 years ago
Explain why an egg thrown at a concrete wall will break, but an egg thrown at a sheet hanging from the ceiling will not. (Be sur
Firlakuza [10]

An egg thrown at a concrete wall will break, but an egg thrown at a sheet hanging from the ceiling will not due to high momentum and acceleration.

<h3>Why an egg thrown at a concrete wall will break?</h3>

An egg thrown at a concrete wall will break, but an egg thrown at a sheet hanging from the ceiling will not because the momentum and acceleration increases when the egg is thrown downward due to gravity but when we throw an egg in the vertical direction, they move against gravity so the momentum and acceleration decreases.

So we can conclude that an egg thrown at a concrete wall will break, but an egg thrown at a sheet hanging from the ceiling will not due to high momentum and acceleration.

Learn more about momentum here: brainly.com/question/7538238

#SPJ1

4 0
2 years ago
A 6.0-kilogram block, sliding to the east across a horizontal, frictionless surface with a momentum of 30.0 kilogram · meters pe
Lina20 [59]

The final speed of the block after the collision with the obstacle is \boxed{3.33\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}}}.

Further Explanation:

Given:

The mass of the block is 6.0\,{\text{kg}}.

The initial momentum of the block is 30\,{{{\text{kg}} \cdot {\text{m}}} \mathord{\left/ {\vphantom {{{\text{kg}} \cdot {\text{m}}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}}.

The impulse imparted by the obstacle is 10\,{\text{N}} \cdot {\text{s}}.

Concept:

The block is sliding towards east and the impulse imparted by the obstacle is towards the obstacle is towards west on the block. It means that the impulse exerted by the obstacle will reduce the momentum of the block.

According to the impulse momentum theorem, the rate of change of momentum of the body is equal to the impulse imparted to the body.

The expression for the impulse momentum theorem is.

{p_f} - p{ & _i} = I               …… (1)                                    

Substitute 30\,{{{\text{kg}} \cdot {\text{m}}} \mathord{\left/{\vphantom {{{\text{kg}} \cdot {\text{m}}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}} for {p_i} and - 10\,{\text{N}} \cdot {\text{s}} for I  in equation (1).

 \begin{aligned}{p_f} &= - 10\,{\text{N}} \cdot {\text{s}} + 30\,{{{\text{kg}} \cdot {\text{m}}} \mathord{\left/{\vphantom {{{\text{kg}} \cdot {\text{m}}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}} \\&= 20\,{{{\text{kg}} \cdot {\text{m}}} \mathord{\left/{\vphantom {{{\text{kg}} \cdot {\text{m}}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}}\\\end{aligned}

The final momentum of the block can be expressed as:

{p_f} = m{v_f}                   …… (2)                                  

Substitute 20\text{kg}\;\text{m/s} for {p_f} and 6.0\,{\text{kg}} for m in equation (2).

 \begin{aligned}20 &= 6 \times {v_f} \\ {v_f}&= \frac{{20}}{6}\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}}\\&= 3.33\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}} \\ \end{aligned}

Thus, the final speed of the block after the collision with the obstacle is \boxed{3.33\;\text{m/s}}.

Learn More:

  1. Choose the 200 kg refrigerator. Set the applied force to 400 n (to the right) brainly.com/question/4033012
  2. With your hand parallel to the floor and your palm upright, you lower a 3-kg book downward brainly.com/question/9719731
  3. Which of the following is an example of a nonpoint source of freshwater pollution brainly.com/question/1482712

Answer Details:

Grade: High School

Chapter: Impulse-momentum theorem

Subject: Physics

Keywords:  Impulse, imparted, obstacle, speed, momentum, the obstacle, impulse-momentum theorem, frictionless surface, speed of block after collision.

5 0
3 years ago
Read 2 more answers
2) In coming to a stop, a car leaves skid marks on a road that are 40 m long.
Effectus [21]
Lolilolololilolollololililili
5 0
2 years ago
Other questions:
  • An athlete stretches a spring an extra 28.6 cm beyond its initial length. how much energy has he transferred to the spring, if t
    13·1 answer
  • Pain in the pleura
    12·2 answers
  • The image shows streetlights powered by solar panels. Which sequence shows the energy transformation is taking place in these li
    14·2 answers
  • Which of the following best describes why we say that light is an electromagnetic wave?
    12·1 answer
  • An object is placed near a concave mirror having a radius of curvature of magnitude 60 cm. How far should you place the object f
    8·1 answer
  • 1 point
    15·2 answers
  • Assume that a clay model of a lion has a mass of 0.225 kg and travels on the ice at a speed of 0.85 m/s. It hits another clay mo
    8·1 answer
  • Which separation method would be most successful in separating the components of a homogeneous mixture? screening evaporation ce
    6·2 answers
  • 2 Points
    9·2 answers
  • The blackbody curve for a star named Zeta is shown below. The most intense radiation for this star occurs in what spectral band?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!