Answer:
Explanation:
This is because The 100 J of potential energy that doesn't go into increasing her kinetic energy goes into thermal energy—heating her bottom and the slide.
To solve this problem it is necessary to apply the concepts related to the concept of overlap and constructive interference.
For this purpose we have that the constructive interference in waves can be expressed under the function

Where
a = Width of the slit
d = Distance of slit to screen
m = Number of order which represent the number of repetition of the spectrum
Angle between incident rays and scatter planes
At the same time the distance on the screen from the central point, would be

Where y = Represents the distance on the screen from the central point
PART A ) From the previous equation if we arrange to find the angle we have that



PART B) Equation both equations we have


Re-arrange to find a,


Answer:
in English please I am quite puzzled
Answer:
Part A:
The proton has a smaller wavelength than the electron.
<
Part B:
The proton has a smaller wavelength than the electron.
<
Explanation:
The wavelength of each particle can be determined by means of the De Broglie equation.
(1)
Where h is the Planck's constant and p is the momentum.
(2)
Part A
Case for the electron:

But 


Case for the proton:


Hence, the proton has a smaller wavelength than the electron.
<em>Part B </em>
For part b, the wavelength of the electron and proton for that energy will be determined.
First, it is necessary to find the velocity associated to that kinetic energy:


(3)
Case for the electron:

but


Then, equation 2 can be used:

Case for the proton :

But 


Then, equation 2 can be used:

Hence, the proton has a smaller wavelength than the electron.