The piece of paper has less mass and will glide down the window, whereas the textbook will go straight to the ground. Since the textbook has more mass and less ways of it being able to 'glide' the textbook will hit the ground first.
Extinct<span> might be a word you associate with animals that lived long ago, like the dinosaurs, but did you know that over 18,000 species are classified as "threatened" (susceptible to extinction) today? Scientists involved in wildlife conservation have a tough job; they are in charge of determining what needs to be done to prevent a species from becoming extinct. Habitat, food supply, and impacts of local human populations are just a few of the factors these scientists take into account. It is a lot to keep track of for a single location, but the job becomes even harder when it is a migratory animal. In this science project, you will get a firsthand look at their job. You will access </span>real<span> data about migratory birds and use satellite images to analyze their habitats, then come up with a conservation plan to protect the species from extinction.</span>
Magnitude of acceleration = (change in speed) / (time for the change).
Change in speed = (27 - 0) = 27 m/s
Time for the change = 10 s
Magnitude of acceleration = (27 m/s) / (10 s) = 2.7 m/s² .
Answer:
Gravity,momentum & friction are examples of FORCE.
Explanation:
Hope this helps you
Do mark me as brainliest
Here it is. *WARNING* VERY LONG ANSWER
________________________________________...
<span>11) If Galileo had dropped a 5.0 kg cannon ball to the ground from a height of 12 m, the change in PE of the cannon ball would have been product of mass(m),acceleration(g)and height(h) </span>
<span>The change in PE =mgh=5*9.8*12=588 J </span>
<span>______________________________________... </span>
<span>12.) The 2000 Belmont Stakes winner, Commendable, ran the horse race at an average speed = v = 15.98 m/s. </span>
<span>Commendable and jockey Pat Day had a combined mass =M= 550.0 kg, </span>
<span>Their KE as they crossed the line=(1/2)Mv^2 </span>
<span>Their KE as they crossed the line=0.5*550*(15.98)^2 </span>
<span>Their KE as they crossed the line is 70224.11 J </span>
<span>______________________________________... </span>
<span>13)Brittany is changing the tire of her car on a steep hill of height =H= 20.0 m </span>
<span>She trips and drops the spare tire of mass = m = 10.0 kg, </span>
<span>The tire rolls down the hill with an intial speed = u = 2.00 m/s. </span>
<span>The height of top of the next hill = h = 5.00 m </span>
<span>Initial total mechanical energy =PE+KE=mgH+(1/2)mu^2 </span>
<span>Initial total mechanical energy =mgH+(1/2)mu^2 </span>
<span>Suppose the final speed at the top of second hill is v </span>
<span>Final total mechanical energy =PE+KE=mgh+(1/2)mv^2 </span>
<span>As mechanical energy is conserved, </span>
<span>Final total mechanical energy =Initial total mechanical energy </span>
<span>mgh+(1/2)mv^2=mgH+(1/2)mu^2 </span>
<span>v = sq rt [u^2+2g(H-h)] </span>
<span>v = sq rt [4+2*9.8(20-5)] </span>
<span>v = sq rt 298 </span>
<span>v =17.2627 m/s </span>
<span>The speed of the tire at the top of the next hill is 17.2627 m/s </span>
<span>______________________________________... </span>
<span>14.) A Mexican jumping bean jumps with the aid of a small worm that lives inside the bean. </span>
<span>a.)The mass of bean = m = 2.0 g </span>
<span>Height up to which the been jumps = h = 1.0 cm from hand </span>
<span>Potential energy gained in reaching its highest point= mgh=1.96*10^-4 J or 1960 erg </span>
<span>b.) The speed as the bean lands back in the palm of your hand =v=sq rt2gh =sqrt 0.196 =0.4427 m/s or 44.27 cm/s </span>
<span>_____________________________ </span>
<span>15.) A 500.-kg horse is standing at the top of a muddy hill on a rainy day. The hill is 100.0 m long with a vertical drop of 30.0 m. The pig slips and begins to slide down the hill. </span>
<span>The pig's speed a the bottom of the hill = sq rt 2gh = sq rt 2*9.8*30 =sq rt 588 =24.249 m/s </span>
<span>__________________________________ </span>
<span>16.) While on the moon, the Apollo astronauts Neil Armstrong jumped up with an intitial speed 'u'of 1.51 m/s to a height 'h' of 0.700 m, </span>
<span>The gravitational acceleration he experienced = u^2/2h = 2.2801 /(2*0.7) = 1.629 m/s^2 </span>
<span>______________________________________... </span>
<span>EDIT </span>
<span>1.) A train is accelerating at a rate = a = 2.0 km/hr/s. </span>
<span>Acceleration </span>
<span>Initial velocity = u = 20 km/hr, </span>
<span>Velocity after 30 seconds = v = u + at </span>
<span>Velocity after 30 seconds = v = 20 km/hr + 2 (km/hr/s)*30s = </span>
<span>Velocity after 30 seconds = v = 20 km/hr + 60 km/hr = 80 km/ hr </span>
<span>Velocity after 30 seconds = v = 80 km/hr=22.22 m/s </span>
<span>_______________________________- </span>
<span>2.) A runner achieves a velocity of 11.1 m/s 9 s after he begins. </span>
<span>His acceleration = a =11.1/9=1.233 m/s^2 </span>
<span>Distance he covered = s = (1/2)at^2=49.95 m</span>