Answer:
Explanation:
Force of friction 
F = μ mg 
μ is coefficient of friction , m is mass and g is acceleration due to gravity .
If f be the force applied to pull the sled , the horizontal component of force should be equal to frictional  force 
The vertical component of applied force will reduce the normal force or reaction force from the ground 
Reaction force R = mg - f sin28.3 
frictional force = μ R where μ is coefficient of friction 
frictional force = μ x (mg - f sin28.3 ) 
This force should be equal to horizontal component of f 
 μ x (mg - f sin28.3 ) = f cos 28.3 
 μ x mg = f μsin28.3 + f cos 28.3 
f = μ x mg / (μsin28.3 + cos 28.3 )
a ) 
work done by pulling force  = force x displacement 
f cos28.3 x d 
 μ x mg d cos28.3  / (μsin28.3 + cos 28.3 )
b ) Putting the given values 
= .155 x 53.1 x 9.8 x 25.3 cos28.3 / ( .155 x sin28.3 + cos 28.3 )
= 1796.76 / (.073 + .88 )
= 1885.37  J 
c )
Work done by frictional force 
= frictional force x displacement 
=  -  μ x (mg - f sin28.3 ) x d  
= -  μ x mgd + f μsin28.3  x d 
= -  μ x mgd + μsin28.3  x d x μ x mg / (μsin28.3 + cos 28.3 )
d )
Putting the values in the equation above 
- .155 x 53.1 x 9.8 x 25.3 + 
.155 x .474 x 25.3 x .155 x 53.1 x 9.8 /( .155 x .474 + .88)
= -2040.67 + 149.92 / .95347
= -2040.67 + 157.23
= -1883.44 J .