7.Jupiter is the largest planet in our solar system at nearly 11 times the size of Earth and 317 times its mass.
When we look at Jupiter, we're actually seeing the outermost layer of its clouds.
The Great Red Spot is a storm in Jupiter's southern hemisphere with crimson-colored clouds that spin counterclockwise at wind speeds
8. 58,232 km
The second largest planet in the solar system
Surface. As a gas giant, Saturn doesn't have a true surface. The planet is mostly swirling gases and liquids deeper down.
Saturn's rings are thought to be pieces of comets, asteroids or shattered moons that broke up before they reached the planet,
9. Unlike the other planets of the solar system, Uranus is tilted so far that it essentially orbits the sun on its side, with the axis of its spin nearly pointing at the star.
Uranus' atmosphere is mostly hydrogen and helium, with a small amount of methane and traces of water and ammonia.
As an ice giant, Uranus doesn't have a true surface. The planet is mostly swirling fluids. While a spacecraft would have nowhere to land on Uranus, it wouldn't be able to fly through its atmosphere unscathed either. The extreme pressures and temperatures would destroy a metal spacecraft.
10. 24,622 km
Neptune has an average temperature of -353 Fahrenheit (-214 Celsius).
Neptune's atmosphere is made up mostly of hydrogen and helium with just a little bit of methane.
I’m going to use molasses as an example of a substance.
The mass and volume both change when changing the amount of molasses.
However, the density does not change. This is because the mass and volume increase at the same rate/proportion!
Even though there is more molasses (mass) in test tube A, the molasses also takes up more space (volume). Therefore, the spacing between those tiny particles that make up the molasses is constant (does not change).
The size or amount of a material/substance does not affect its density.
D. Neutrino
Neutrinos are particles that rarely interact with matter.
Answer:
W= -2.5 (p₁*0.0012) joules
Explanation:
Given that p₀= initial pressure, p₁=final pressure, Vi= initial volume=0 and Vf=final volume= 6/5 liters where p₁=p₀ then
In adiabatic compression, work done by mixture during compression is
W=
where f= final volume and i =initial volume, p=pressure
p can be written as p=K/V^γ where K=p₀Vi^γ =p₁Vf^γ
W= 
W= K/1-γ ( 1/Vf^γ-1 - 1/Vi^γ-1)
W=1/1-γ (p₁Vf-p₀Vi)
W= 1/1-1.40 (p₁*6/5 -p₀*0)
W= -2.5 (p₁*6/5*0.001) changing liters to m³
W= -2.5 (p₁*0.0012) joules