1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
snow_lady [41]
3 years ago
5

What are the output waveforms of the following waves, after passing through a transformer?

Physics
1 answer:
Ber [7]3 years ago
8 0
The output waveforms after passing through the transformer actually depend on the type of transformer used. It could either be a step-up transformer (steps voltage up), or a step-down transformer (steps voltage down). Both transformers have an output voltage in a form of a sine wave.
You might be interested in
The proper order of the cycle of addiction is​
Viktor [21]

Answer:

The answer would be drug use, addiction, dependence, tolerance, and withdrawal.

4 0
4 years ago
Read 2 more answers
The escape speed from an object is v2 = 2GM/R, where M is the mass of the object, R is the object's starting radius, and G is th
Rom4ik [11]

Answer:

Approximate escape speed = 45.3 km/s

Explanation:

Escape speed

        v=\sqrt{\frac{2GM}{R}}

Here we have

   Gravitational constant = G = 6.67 × 10⁻¹¹ m³ kg⁻¹ s⁻²

   R = 1 AU = 1.496 × 10¹¹ m

   M = 2.3 × 10³⁰ kg

Substituting

    v=\sqrt{\frac{2\times 6.67\times 10^{-11}\times 2.3\times 10^{30}}{1.496\times 10^{11}}}=4.53\times 10^4m/s=45.3km/s

Approximate escape speed = 45.3 km/s

6 0
3 years ago
A ball is thrown from a rooftop with an initial downward velocity of magnitude vo = 2.9 m/s. The rooftop is a distance above the
Step2247 [10]

Answer:

a) The velocity of the ball when it hits the ground is -20.5 m/s.

b) To acquire a final velocity of 27.3 m/s, the ball must be thrown from a height of 38 m.

Explanation:

I´ve found the complete question on the web:

<em />

<em>A ball is thrown from a rooftop with an initial downward velocity of magnitude v0=2.9 m/s. The rooftop is a distance above the ground, h= 21 m. In this problem use a coordinate system in which upwards is positive.</em>

<em>(a) Find the vertical component of the velocity with which the ball hits the ground.</em>

<em>(b) If we wanted the ball's final speed to be exactly 27, 3 m/s from what height, h (in meters), would we need to throw it with the same initial velocity?</em>

<em />

The equation of the height and velocity of the ball at any time "t" are the following:

h = h0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

h = height of the ball at time t.

h0 = initial height.

v0 = initial velocity.

t = time.

g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive).

v = velocity of the ball at a time "t".

First, let´s find the time it takes the ball to reach the ground (the time at which h = 0)

h = h0 + v0 · t + 1/2 · g · t²

0 = 21 m - 2.9 m/s · t - 1/2 · 9.8 m/s² · t²

Solving the quadratic equation using the quadratic formula:

t = 1.8 s  ( the other solution of the quadratic equation is rejected because it is negative).

Now, using the equation of velocity, let´s find the velocity of the ball at

t = 1.8 s:

v = v0 + g · t

v = -2.9 m/s - 9.8 m/s² · 1.8 s

v = -20.5 m/s

The velocity of the ball when it hits the ground is -20.5 m/s.

b) Now we have the final velocity and have to find the initial height. Using the equation of velocity we can obtain the time it takes the ball to acquire that velocity:

v = v0 + g · t

-27.3 m/s = -2.9 m/s - 9.8 m/s² · t

(-27.3 m/s + 2.9 m/s) / (-9.8 m/s²) = t

t = 2.5 s

The ball has to reach the ground in 2.5 s to acquire a velocity of 27.3 m/s.

Using the equation of height, we can obtain the initial height:

h = h0 + v0 · t + 1/2 · g · t²

0 = h0 -2.9 m/s · 2.5 s - 1/2 · 9.8 m/s² · (2.5 s)²

-h0 = -2.9 m/s · 2.5 s - 1/2 · 9.8 m/s² · (2.5 s)²

h0 = 38 m

To acquire a final velocity of 27.3 m/s, the ball must be thrown from a height of 38 m.

6 0
4 years ago
A pail in a water well is hoisted by means of a frictionless winch, which consists of a spool and a hand crank. When Jill turns
Katena32 [7]

Answer:

166 W

Explanation:

Power is the rate at which work is done.

\text{Power} = \dfrac{\text{Work done}}{\text{time}}

The work done by Jill is the product of the weight of the pail and the height it moves.

The weight is the product of the mass and acceleration of gravity, <em>g</em>. Taking <em>g</em> as 9.81 m/s², the weight is

<em>W</em> = (6.90 kg)(9.81 m/s²) = 67.689 N

Work done = (67.689 N)(27.0 m) = 1827.603 J

Power = (1827.603 J) ÷ (11.0 s) = 166 W

4 0
4 years ago
Which blood component stops the bleeding after a cut?
UNO [17]

Answer:

Platelets

Explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • A rock rolls down a steep hill. Its intial velocity is 1 meter per second. By the time it reaches the bottom of the hill 30 seco
    9·1 answer
  • A ray of white light moves through the air and strikes the surface of water in a beaker. The index of refraction of the water is
    9·1 answer
  • Is gravity a field force
    10·1 answer
  • Which electromagnetic waves have the shortest wavelength and the highest frequency? _________ waves
    8·2 answers
  • Cuántas veces es mayor la masa del protón que la del electrón?
    5·1 answer
  • Marie curie investigation method
    9·1 answer
  • How are desert plants adapted to their climate?
    7·1 answer
  • Help me plzzzz
    13·2 answers
  • What is energy and what is the formula of energy
    7·1 answer
  • A lever is used to lift a boulder. The fulcrum is placed 1.60 m away from the end at which you exert a downward force, producing
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!